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Abstract Innovation diffusion has been studied extensively in a variety of disciplines, includ-
ing sociology, economics,marketing, ecology, and computer science. Traditional literature on
innovation diffusion has been dominated by models of aggregate behavior and trends. How-
ever, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent
heterogeneity and enables fine-grained modeling of interactions mediated by social and geo-
graphic networks. While most ABMwork on innovation diffusion is theoretical, empirically
grounded models are increasingly important, particularly in guiding policy decisions. We
present a critical review of empirically grounded agent-based models of innovation diffu-
sion, developing a categorization of this research based on types of agent models as well as
applications.By connecting themodelingmethodologies in thefields of information and inno-
vation diffusion, we suggest that the maximum likelihood estimation framework widely used
in the former is a promising paradigm for calibration of agent-based models for innovation
diffusion. Although many advances have been made to standardize ABM methodology, we
identify fourmajor issues inmodel calibration and validation, and suggest potential solutions.

Keywords Literature review · Innovation diffusion · Agent-based modeling · Empirical
method · Calibration · Validation

1 Introduction

1.1 Innovation diffusion: theoretical foundations

Diffusion refers to the process by which an innovation is adopted over time by members
of a social system (Rogers 2010; Valente 2005). Commonly, an innovation refers to a new
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technology, but the conceptual notion can be applied far more broadly to consider the spread
of ideas and practices. Rogers (2010) laid down the theoretical foundations of innovation dif-
fusion in his book,Diffusion of Innovations, in which he synthesizes studies in anthropology,
sociology, and education, and proposes a generic theory to explain the diffusion of innova-
tions among individuals and organizations. He suggests five characteristics of innovation to
determine the rate of adoption: relative advantage, compatibility, complexity, trialability, and
observability. Rogers models human decision about adoption of innovation as a multi-stage
process, involving five stages: knowledge, persuasion, decision, implementation, and confir-
mation. Furthermore, he classifies individuals into five adopter categories: innovators, early
adopters, early majority, late majority, and laggards. In addition to these high-level consid-
erations, much attention has been on the significance of social relationships and influence in
innovation diffusion (in contrast with, or complementary to, economic considerations). Start-
ing with early groundwork (Ryan and Gross 1943), there has now been extensive research on
how social network structure, group norm, opinion leadership, weak ties, and critical mass
impact diffusion of innovations (Valente 1995; Valente and Rogers 1995).

1.2 Mathematical models of innovation diffusion

Traditional mathematical models of innovation diffusion aim to model aggregate trends,
rather than individual decisions. Numerous suchmodels follow the framework of Bassmodel,
which is one of the most influential models in marketing (Bass 1969; Hopp 2004). The Bass
model was originally designed for forecasting sales of new consumer durables. The model
assumes that the probability of adopting a product, given the person has not yet adopted,
is linearly related to the number of past adopters. The Bass model can be calibrated with
aggregate sales data, and Bass showed that it can qualitatively capture the S-shaped pattern
of aggregate adoption over time (Peres et al. 2010).

The Bass model has a number of limitations. First, it does not capture individual inter-
actions. Indeed, the model explicitly assumes a fully connected and homogeneous network.
For innovation diffusion, this is an important drawback, as individual interdependence and
communications are among the most significant aspects to understand innovation diffu-
sion (Valente 2005; Rogers 2010). The second criticism of the Bass model is that it does
not include any decision variables that are of interest from a managerial perspective. The
issue has been addressed later by incorporating the marketing mix variables, price, and
advertising, into the diffusion model. For an extensive review of research in this direction,
we refer readers to Mahajan et al. (2000) and Meade and Islam (2006). Nevertheless, these
marketing mix variables are mostly designated for the entire market without a consideration
of individual heterogeneity. Lastly, the predictability of the Bass model is often questioned.
For example, Chandrasekaran and Tellis (2007) argue, that the model needs considerable
data around the critical point at which diffusion accelerates to be effective, but once such
data is available the value of the Bass model becomes limited.

1.3 Agent-based modeling for innovation diffusion

Agent-based modeling (ABM) has emerged as another natural approach to study innovation
diffusion. Agent-based models are typically simulation models that capture dynamic interac-
tions among a (usually large) collection of individuals. They were originally developed as a
tool for complexity theory research (Lewin 1999; Holland 1995), and have gained popularity
in many scientific areas for the past decade (Gilbert and Troitzsch 2005; Macal and North
2010; Garcia and Jager 2011;Macal 2016). TheABMparadigm offers two advantages for the
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study of innovation diffusion: first, it facilitates the modeling of agent heterogeneity, and sec-
ond, it enables fine-grained modeling of interactions mediated by social networks. Indeed,
agent-based modeling has been applied in study of innovation diffusion to aid intuition,
theoretical exploration, and to provide policy decision support (Kiesling et al. 2012).

Traditional agent-basedmodels are largely conceptual (Axelrod 1997; Epstein 1999). This
use of ABMs as primarily conceptual tools is partly because they are commonly considered
as ideal learning tools for scientists to understand a system under a variety of conditions by
simulating the interactions among agents. As a consequence, the simplicity of agent rules
is commonly a crucial consideration in the design of agent-based models. Such simplicity,
however, has given rise to criticism of the ABM methodology as being “toy models” that do
not reflect reality (Garcia and Jager 2011). Moreover, an increasingly important criticism is
that if ABMs are used in any policy decision support, the predictive validity of the model
becomes paramount, and models that are primarily conceptual may be inadequate for such
tasks.

It is this increasing use of agent-based modeling to obtain policy guidance that has moti-
vated increasing use of empirically grounded agent-based models. Empirical agent-based
models have recently experienced significant growth (Kiesling et al. 2012). In these stud-
ies, empirical data are used to initialize simulation, parameterize agent-based models, or to
evaluate model validity. The explosion of high-resolution data sets, coupled with advances in
data analytics andmachine learning have given rise to increased opportunities for empirically
grounding agent-based models, and this trend is likely to continue. Our goal is to provide
an overview of these empirically grounded agent-based models developed with the goal of
studying innovation diffusion. Through a careful examination of these studies, we also aim
to identify potential methodological issues that arise, and suggest ways to address these.

1.4 Contributions

The diffusion of new products has been an important topic for decades (Mahajan et al. 1990,
2000; Meade and Islam 2006; Chandrasekaran and Tellis 2007; Peres et al. 2010). The preva-
lence ofABMapproach can be glimpsed from a number of reviewpapers fromdisciplines like
sociology (Macy and Willer 2002), ecology (Matthews et al. 2007), and marketing (Garcia
2005; Hauser et al. 2006; Negahban and Yilmaz 2014). For example, Garcia (2005) describes
potential uses of ABM inmarket research associated with innovations, exploring benefits and
challenges of modeling complex dynamical systems in this fashion. Dawid (2006) surveys
agent-based models of innovation diffusion within a computational economics context. Peres
et al. (2010) review diffusion models in the context of a single market and cross-markets and
brands. To the best of our knowledge, the closest work to ours is a review of agent-based
simulations of innovation diffusion by Kiesling et al. (2012), who survey both theoretical
and empirical work. In comparison with these past reviews, we make the following novel
contributions:

1. We provide systematic review of the empirical agent-based models of innovation dif-
fusion. This is in contrast to the narrative review of the applied work as provided in
Kiesling et al. (2012). In particular, we offer a novel classification of agent adoption
models as employed in the reviewed papers. By highlighting the adoption models and
their parameterization methods, we aim to bridge methodological gaps among domains
and applications.We identified the papers to include in a rigorous and systematic manner.
In terms of scope, any work presenting an agent-basedmodel using empirical data to sim-
ulate the diffusion of innovations was included. Our selection process combined results
from multiple databases, including Google Scholar and ScienceDirect, with extensive
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search for relevant keywords, and back-tracking and forward-tracking reference lists,
while carefully screening out non-candidates.

2. Our review is comprehensive and updated. The collection of reviewed papers spans a
superset of the applications as covered in Kiesling et al. (2012) and, indeed, a number
of significant efforts have emerged after 2012. Notably, we also include a selection of
papers from the literature on information diffusion, a fast-growing area. These models
rely on principled machine learning techniques for model calibration based on empirical
observations of diffusion traces. In addition, we exclude two (out of 15) papers from
Kiesling et al. (2012) which are not empirically grounded. In the end, we reviewed 43
papers, of which 30 (23 from years after 2011) were not included by Kiesling et al.
(2012).

3. We provide a critical review, assessing strength andweaknesses of the surveyed research.
Almost all surveyed papers followed standard modeling steps and presented their results
systematically. However, we conclude that the current literature commonly exhibits sev-
eral major shortcomings in model calibration and validation.1 Addressing these issues
would significantly increase the credibility of agent-based models. We, therefore, devote
a section to an overview of existing validation methods in the literature and an in-depth
discussion of these issues and potential solutions.

2 Categorization of empirically grounded ABMs of innovation diffusion

We review the burst of recent developments of empirically grounded agent-based models,
which are examined through two dimensions: models and applications. First, to facilitate
methodological comparison, we group the papers into six categories which represent the
specific approaches taken to model individual agent decision processes: mathematical opti-
mization based models, economics-based models, cognitive agent models, heuristic models,
statistics-based models and social influence models. Second, as we observe that modeling
efforts span several domains, the next section offers an application-focused categorization.

The categorization in this section is aimed at qualitatively clustering the existing agent-
based models with respect to their modeling methods, which can be further characterized
from several dimensions, such as behavioral assumption, data granularity, internal structure,
calibration and validation. The six categories we identified present a comprehensive picture
and structured patterns of the different methods used to model individual agent decision
processes seen in a variety of applications.

We review each paper in sequence and in some detail, providing sufficient depth in the
review for a reader to understand the nature of each surveyed work. In particular, we focus on
how data was used in the modeling process, and in particular, in initialization, calibration and
validation steps. We attempt to draw connections among the papers using our categorization
structure (i.e., by grouping them into the six categories based on the methodology used to
model individual agent behavior). Table 1 shows how these survey articles are distributed
across the categories and publication years.2 Notice that this approach is different from the
synthesis-based approach followed by other review papers, such as, Windrum et al. (2007)
and Macal (2016), which generally draws conclusion for a collection of papers but does not
provide sufficient detail to assess how data is used in these efforts.

1 The concepts of calibration and validation are explained in Sect. 5.1 below.
2 For simplicity, we omit “20” and use the last two digits to denote a year. For example, “07(2)” stands for 2
publications in year 2007.
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Table 1 Distribution of surveyed papers over categories and years

Category by modeling methods Distribution in year Total published

Mathematical optimization based model 01, 07(2), 09, 10, 13 6

Economics-based model 10, 11(2), 12, 13, 14(2), 15 8

Cognitive agent model 02, 06, 09(2), 12, 13(2), 15(2), 16(2) 11

Heuristic model 10, 11(2) 3

Statistics-based model 07(2), 08, 09, 11, 12, 13, 14, 15, 16 10

Social influence model 13(2), 14, 16, 17 5

Total 43

2.1 Mathematical optimization (MO) based models

The MO-based models posit that agents (e.g., farmer households) are deliberate decision-
makerswho use sophisticatedmathematical planning tools to assess the possible consequence
of actions.While agents may encounter uncertainty, incomplete information, and constraints,
their final decisions to adopt innovations are determined by concrete optimization objectives.
The use of complex mathematical programs is commonly justified by the fact that farmer
agents often consider their farming decisions in terms of economic returns.

In a seminal paper, Berger (2001) developed a spatial multi-agent mathematical program-
ming (MP) model of diffusion of farming innovations in Chile. Production, consumption,
investment, and marketing decisions of individual households are modeled using linear pro-
gramming with the goal of maximizing expected family income subject to limited land and
water assets. Moreover, in accordance with the literature on innovation diffusion, the model
incorporates effects of past experience, as well as observed experience by peers. This is done
by imposing a precondition for theMP procedure that the net benefit is only calculated if peer
adoption level reaches the predefined threshold. In addition to such contagion effects, agent
interactions are also reflected by the feedback effects of land and water resources and return-
flows of irrigation water, implemented by coupling the economic agent decision model with
hydrological components. In simulation models, agents are cellular automata with each cell
associated with biophysical and economic attributes, such as soil quality, water supply, land
cover/land use, ownership, internal transport costs, and marginal productivity. These agent
properties are initialized using empirical data derived from various data sources, including
a survey that captures both agronomic and socio-economic features, and a spatial data set
with information about land and water use. Parameters were calibrated in terms of closeness
of simulation experiments and farm data at both macro and micro levels. Validation was
then performed by regressing land use results based on the model on actual land use in the
data. Although values of the slope of this regression are reported for both macro and micro
levels, validation is incomplete. For instance, micro-validation is only conducted for the year
when the simulation starts due to data availability. Finally, the fact that validation was not
conducted on data independent from calibration is another important weakness. Later, Berger
et al. (2007) applied his MP-based agent-based modeling approach to study the complexity
of water uses in Chile. Unfortunately, that work still had the same issue on validation.

Schreinemachers et al. (2007) adopted the MP-based approach to simulate soil fertility
and poverty dynamics in Uganda, and analyze the impact on these of access to short-term
credit and alternative technologies. At the heart of the model is a simulation of a farmer’s
decision process, crop yields, and soil fertility dynamics. The decision model is comprised
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of three parts: (1) a set of possible decisions related to agriculture, such as growing crops,
raising livestock, and selling and purchasing agricultural products; (2) a utility function
that determines how much the decisions contribute to the farmer’s objectives; and (3) links
among decision variables represented by a set of equations. Following Berger (2001), a
three-stage decision flow is defined that separates agent decisions into investment, produc-
tion, and consumption. Moreover, the portion of the model capturing consumption includes
econometrically-specified allocation of farm and non-farm income to saving, food, and other
expenditures. Properties of the household agent, such as quantity and quality of land, labor,
livestock, permanent crops, and knowledge of innovation, are sampled from empirical dis-
tributions based on limited samples. Additional features include models of animal and tree
growth, technology diffusion, demographics, and price changes. In technology diffusion,
peer influence is captured in the same manner as Berger (2001), but notably, each agent is
assigned a threshold based on household survey data. Themodel was systematically validated
in three steps: first, econometric models were validated for accuracy, then each component
was validated independently, and finally the system as a whole. Similar to Berger (2001),
validation used the same data as calibration.

Schreinemachers et al. (2009) studied the diffusion of greenhouse agriculture, using bell
pepper in a watershed in the northern uplands of Thailand as a case study. The work largely
follows the MP-MAS (mathematical programing-based multi-agent systems) approach due
to Berger (2001). Notably, the author proposes calibrating the diffusion thresholds as
described in Berger (2001) by using a binary adoption model (e.g., logistic regression),
which is estimated from farmer survey data. To obtain threshold values for individuals, the
author first computes adoption probability for each agent based on a set of observable inde-
pendent variables, and then ranks these, dividing them into the five categories of innovators
due to Rogers (1995). Validation was carried by checking the value of R2 associated with a
regression of observed land use on its predicted value. The proposed validation method suf-
fers from the same limitation as other related research in using the same data for calibration
and validation.

Schreinemachers et al. (2010) applied the MP-based approach to study the impact of
several agricultural innovations on increasing profitability of litchi orchards in Northern
Thailand. Unlike Schreinemachers et al. (2009) that estimated a logistic regression model to
assign agents to threshold groups, they assigned thresholds randomly due to the lack of rele-
vant data. Themodel was validated using regressionmethod as described in Schreinemachers
et al. (2009), and validation suggests that the model reasonably represents aggregate agent
behavior, even while individual-level behavior is not well captured. As in prior work, cali-
bration and validation used the same data.

Alexander et al. (2013) developed an agent-based model of the UK perennial energy
crop market to analyze spatial and temporal dynamics of energy crop adoption. The model
includes the interactionof supply anddemandbetween twoagent groups: farmers andbiomass
power plant investors. The farmer agents have fixed spatial locations which determine the
land quality and climate that in turn impact crop yields, and decide on the selection of
crops via a two-stage approach similar to Berger (2001), with peer influence again modeled
through a threshold function. A farmer agent considers adoption only if the proportion of
neighbors within a given radius with a positive adoption experience exceeds a threshold.
When adoption is considered, a farm scale mathematical program is used to determine the
optimal selection of crops that maximizes utility as described in Alexander et al. (2014).
Calibration of the farm scale model is either informed by empirical data or in reference to
previous studies. Validation involved checkingmodel behaviors on simplified configurations,
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unit-testing of model components, and comparing simulation results against empirical data.
However, validation did not use independent data from calibration.

2.2 Economics-based models

Unlike theMO basedmodels in Sect. 2.1, the economics-basedmodels use simpler rules with
fewer constraints and decision variables. Particularly, agents commonly simply minimize
cost, maximize profit, or, more generally, maximize personal utility.

2.2.1 Cost minimization

Faber et al. (2010) develop an agent-based simulation model for energy technologies, micro-
CHP (combined heat and power) and incumbent condensing boilers, in competition for
consumer demand. Consumer agents are classified by housing type, which is viewed as the
most important factor in determining natural gas requirements for heating units. At each time
step a consumer considers purchasing a new heating unit, and follows a three-step decision
algorithm: (1) assess if a new unit is needed, (2) scan the market for “visible” heating units,
where “technology awareness” is formulated as a function of the level of advertising, market
share, and bandwagon effect, and (3) each consumer chooses the cheapest technology of
those that are visible. The cost, which depends on the consumer’s class, is comprised of
purchase costs, subsidies, and use costs over the expected life of the technology. Some of
the parameters are calibrated using empirical data, while others are set in an ad hoc fashion.
Some validation was performed through the use of a sensitivity analysis of the variables such
as market size, progress rate, and technology lifetime. However, no explicit model validation
using empirical data was undertaken.

2.2.2 Profit maximization

Sorda et al. (2013) develop an agent-based simulation model to investigate electricity gener-
ation from combined heat and power (CHP) biogas plants in Germany. Instead of simulating
farmer’s individual decision whether to invest in a biogas plant, the model solves a system-
wide optimization problem from the perspective of a global planner. The model includes two
types of agents: information agents, including Federal Government, Bank, Electric Utility,
and Plant Manufacturer, and agents making investment decisions, including the Substrate
Supplier, District, Decision-Maker, and Heat Consumer. The core decision-making agent
acts as a representative for investors in each community. The agent chooses to invest in a
biogas facility whenever sufficient resources are available and the investment yields positive
net present value. This work used multiple data sources to construct the simulation model.
For example, plant operator guidelines and manufacturer specifications were used to obtain
data about the characteristics of biogas plants. Although the model is thus informed by real
data, it is not quantitatively validated.

2.2.3 Utility maximization

Broekhuizen et al. (2011) develop an agent-based model of movie goer behavior which
incorporates social influence in movie selection decisions. Their study investigates two types
of social influence: the influence of past behavior by others, and influence stemming from
preferences of an individual’s friends, such as group pressure to join others in seeing a
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movie. The main purpose of this work is to determine the degree to which different types of
social influence impact inequality. In their model, agent’s decision-making is probabilistic
and utility-driven. An agent first observes which movies are being shown in the marketplace
with some probability. Next, with a specified probability, an agent is selected to consider
seeing a movie. If selected, it goes to the movie that maximizes expected utility among all
those it is aware of. Otherwise, it does not see any movie. Utility in this setting is a weighted
sum of individual utility, which represents the alignment between individual’s preferences
and movie characteristics, and social utility which is a combination of the two types of
social influence above. Some of the model parameters are either theoretically determined or
empirically calibrated, while the variability of the rest is investigated by sensitivity analysis.
Validation involved a cross-national survey, using cross-cultural differences due toHofstede’s
collectivism-individualism index to measure social influence. While the validation is based
on an independent survey study, it is largely qualitative.

Günther et al. (2011) introduce an agent-based simulation approach to support market-
ing activities. The proposed model was applied to the study of a new biomass-based fuel
that would likely be introduced in Austria. Consumer agents are embedded in a social net-
work, where nodes represent agents and edge weights determine the probability with which
the connected agents communicate. The authors tested several network structures, including
random (Erdos-Renyi) networks, small-world networks, and so-called “preferences-based”
networks, where connections between agents are based on geographical and cognitive prox-
imity as well as opinion leadership. Each agent is characterized by preferences, geographical
position, tanking behavior, how informed they are about the product, and their level of
social influence. Agents have preferences for several product attributes: price, quality, and
expected environmental friendliness, which are initialized differently based on consumer
type. Agents are geographically distributed in virtual space based on the spatial distribu-
tion of Austrian population, and their tanking behavior is a function of fuel tank capacity,
travel behavior, and habits. Individual information level on the innovation at hand captures
the knowledge about a product, which increases as a function of interpersonal communi-
cation and exposure to marketing activities. Influence level, on the other hand, represents
an agent’s expertise with the innovation and determines the amount of information received
through communication. Upon interaction, an agent with lower information level learns from
a more informed agent. Most importantly, the utility function for agent i at time t is given by
ui,t = (1 − Pricet ) × wi,1 + Pricet × wi,2 + ppqi,t × wi,3 + wi,4, where 0 ≤ wi,k ≤ 1
and

∑4
k=1 wi,k = 1, and the first and second weights pertain to price, while the last two

represent how strongly agents prefer quality and how willing they are to seek renewable
energy sources for fuel, respectively. An agent is assumed to adopt if utility exceeds a spec-
ified individual threshold drawn for each agent from the uniform distribution. Moreover, the
perceived product quality, ppqi is assumed to gradually converge the true product quality
for adopters. The author briefly mentions that model parameters are set in reference to a prior
case study. Apart from this, no detailed information is provided about howmodel parameters
are actually calibrated in the setting. Moreover, the model was only validated qualitatively
with subjective expert knowledge.

Holtz and Pahl-Wostl (2012) develop a utility-based agent-based model to study how
farmer characteristics affect land-use changes in a region of Spain. As relevant data are
scarce, their model cannot be quantitatively calibrated and validated. Empirical data are used
to initialize the model, deriving the initial crop distribution, and to assess the validity of the
model qualitatively. In thismodel, an agent’s utility is formulated as aCobb–Douglas function
by multiplying four influences: gross margin, risk, labor load, and regulatory constraints.

123



Empirically grounded agent-based models of innovation…

Parameters associated with these influences differ with the types of farmers, for example,
part-time, family, and business-oriented farmers would have distinct utility parameters. In
the decision process, an agent chooses a land use pattern that maximizes its utility, where
land use patterns involve a combination of crop and irrigation technology, constrained by
policies. The diffusion of irrigation technology is simulated based on the concept that the
more widely used a technology is, the more likely it is to be considered by individual farmers.
Their experiments explore the importance of each influence variable in the utility function, as
well as of farmer types, by qualitatively comparing the simulation results with empirical data.

Plötz et al. (2014) propose a model for the diffusion of electric vehicles (EVs) to evaluate
EV-related policies based driving data in Germany. The model determines the market shares
of different technologies by simulating each driving profile as both EV and conventional
vehicle, choosing the optionwhichmaximizes the driver’s utility, and then extrapolating these
agent-level choices to aggregate market shares. In modeling individual decisions, utility is
defined as a function of total cost of ownership (TCO), choice of EV brands, and individual
willingness-to-pay-more (WTPM). The authors combined survey results with driving profiles
to derive four categories of agents (adopters), and assigned each driving profiles to one of
these categories. Through simulating the plug-in hybrid electric vehicle (PHEV) share of the
market as a function of annual average vehicle kilometers traveled (VKT) for medium-sized
vehicles, the model was validated by comparing original group assignment with simulated
outcomes and by examining simulated diesel market shares relative to actual values within
different branches of industry. While validation is quantitative and rigorous, it does not use
independent data. Moreover, the model does not capture social influence which is often a key
aspect of innovation diffusion modeling.

McCoy and Lyons (2014) develop an agent-based model of diffusion of electric vehicles
among Irish households. Agents representing households are located at a regular lattice
space. They are heterogeneous as suggested by their characteristics. Agents have two static
attributes, Income Utility (IU) and Environmental Utility (EU), drawn independently from
empirical distributions derived from a survey. In particular, IU is based on an agents social
class, tenure type, and age, which are assumed to be highly correlated with income, whereas
EU is based on the agent’s past adoption of energy efficiency technologies and their attitude
toward the environment. Each agent i has a unique threshold, θi , drawn from a distribution
that is negatively correlated to IU, and adopts ifUi (t) ≥ θi and t× cri t ≥ rand(0, 1), where,
cri t is decimal value that is used to account for inertia that exists in early stage of technology
adoption, while utility Ui (t) is defined as Ui (t) = αi IUi + βi EUi + γi Gi (t) + δi S(t),
where, IU represents individual’s preferences, G is social influence, and S is social norms,
and αi +βi +γi +δi = 1. To allow these parameters to vary by agent, the authors specify four
distinct consumer groups with different preferential weighting schemes. Although the agents
in the simulation are initialized using empirical distributions, key parameters in the decision
model are not derived empirically but are based on the authors’ assumptions. Additionally,
no rigorous validation is provided.

Palmer et al. (2015) developed an agent-based model of diffusion of solar photovoltaic
(PV) systems in the residential sector in Italy. The utility of agent j is defined as the
sum of four weighted partial utilities, i.e., U ( j) = wpp(sm j ) · u pp( j) + wenv(sm j ) ·
uenv( j) + winc(sm j ) · uinc( j) + wcom(sm j ) · ucom( j), where

∑
k wk(sm j ) = 1 for

k ∈ K : {pp, env, inc, com} and wk(sm j ),U ( j) ∈ [0, 1]. From left to right the partial
utilities are: (1) payback period of the investment, (2) environmental benefits, (3) house-
hold income, and (4) social influence. An agent chooses to invest in PV if its total utility
exceeds an exogenously specified threshold. Thresholds above vary by agent’s demographic
and behavioral characteristics, sm j . The four partial utilities are derived from empirical data.
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Specifically, the payback period is estimated based on investment costs, local irradiation
levels, government subsidies, net earnings from generating electricity from the system vs.
buying it from the grid, administrative fees, and maintenance costs. The environmental ben-
efit is based on an estimate of reducedCO2 emissions saved. Household income is estimated
based on household demographics, such as age, level of education, and household type.
Finally, social influence is captured by the number of neighbors of a household within its
social network who have previously adopted PV. The social network among agents is gen-
erated according to the small-world model (Watts and Strogatz 1998), modified to account
for socio-economic factors. The model parameters are calibrated by trying to match simu-
lated adoption with the actual aggregate residential PV adoption in Italy over the 2006–2011
period. The model is then applied to study solar PV diffusion in Italy over the 2012–2026
period. However, no quantitative validation is offered.

2.3 Cognitive agent models

While both MO-based (Sect. 2.1) and economics-based (Sect. 2.2) models elaborate eco-
nomic aspects of the decision process and integrate simple threshold effects, cognitive agent
models aim to explicitly model how individuals affect one another in cognitive and psycho-
logical terms, such as opinion, attitude, subjective norm, and emotion. This category includes
the Relative Agreement Model, the Theory of Planned Behavior, the Theory of Emotional
Coherence, and the Consumat Model.

2.3.1 Relative agreement model

The Relative Agreement Model belongs to a class of opinion dynamics models (Hegsel-
mann et al. 2002) and addresses how opinion and uncertainty are affected by interpersonal
interactions. Seminal work is due to Deffuant et al. (2000), who investigate how the mag-
nitude of thresholds, with respect to attitude difference, leads to group opinion convergence
and extremeness. The relative agreement model is often known as “Deffuant model” in the
literature.

Deffuant et al. (2002b) design an agent-based model to simulate organic farming conver-
sion in France. To model impact of interactions on the individual decision, they relied on the
Deffuant model in which both opinion and uncertainty are continuous variables. In the dif-
fusion model, farmer agent has an “interest” state with three possible values: not-interested,
uncertain, and interested. The actual value is based on the agent’s opinion (represented as
a mean value and confidence) and economic consideration. The value of the interest state
depends on the position of the global opinion segment compared to a threshold value. Agent
changes opinion after discussing with peers using a variant of the Relative Agreement algo-
rithm (Deffuant et al. 2002a). The farmers send messages containing their opinions and
information, following a two-stage diffusion model of Valente (1995), mediated by a net-
work generated according to the Watts and Strogatz (1998) model. These impact opinions
of the recipients as a function of opinion similarity, as well as confidence of the sender, with
more confident opinions having greater influence. In addition, if the farmer agent is “inter-
ested” or “uncertain”, he performs an evaluation of the economic criterion, and if he remains
interested, he requests a visit from a technician. After this visit, the economic criterion is
evaluated again under reduced uncertainty. Finally, the adoption decision is made when the
farmer has been visited by a technician and remains “interested” for a given duration.

Many model parameters governing the decision and communication process are not
informed by empirical data. The authors tested the sensitivity of the model by varying these
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variables, including the main parameters of the dynamics, the parameters of the initial opin-
ion distribution average number of neighborhood and professional links, and variations of
the institutional scenario. Within this parametric space, they aimed to identify parameter
zones that are compatible with empirical data. For each parameter configuration, the authors
defined two error measures: the adoption error and the error of proximity of adopters to the
initial organic farmers. A decision tree algorithm was then used to find the parameter zones
where the simulated diffusion has an acceptable performance. While this sensitivity analysis
step can be viewed as model calibration, it is distinct from classical calibration which aims at
finding a single best parameter configuration. Themodel was not validated using independent
data.

2.3.2 Theory of planned behavior

The Theory of Planned Behavior (TPB) postulates that an individual’s intention about a
behavior is an important predictor of whether they will engage in this behavior (Ajzen 1991).
As a result, the theory identifies three attributes that jointly determine intention: attitudes,
subjective norms, and perceived behavioral control. The relative contribution for each pre-
dictor is represented by a weight which is often derived empirically using regression analysis
based on survey data.

Kaufmann et al. (2009) build an agent-based simulation model on TPB to study the diffu-
sion of organic farming practices in two New European UnionMember States. Following the
TPB methodology, each agent is characterized by three attributes: the attitude ai , subjective
norm si , and perceived behavioral control pi , each ranging from -1 (extremely negative)
to +1 (extremely positive). The intention Ii is defined as Ii = wa

i ai + ws
i si + w

p
i pi ,

where wa
i , w

s
i , w

p
i are relative contribution toward intention. The weights for non-adopters

and adopters are derived separately using linear regressions based on the survey data. If an
agent’s intention exceeds a threshold t it adopts, and does not adopt otherwise. The threshold
is obtained from survey data as the average intention of non-adopters who have expressed
a desire to adopt. In the simulation model, social influence is transmitted among network
neighbors in each time step in a random order. Specifically, when one node speaks to another,
the receiver shifts its subjective norm closer to the sender’s intention, following the relative
agreement framework. Social networks are generated to reflect small-world properties (Watts
and Strogatz 1998) and a left-skewed degree distribution (Noble et al. 2004), with specifics
determined by a set of parameters, which are set based on survey data (such as the average
degree).While empirical data is thus used to calibrate parameters of themodel, no quantitative
validation was provided.

Schwarz and Ernst (2009) propose an agent-based model of diffusion of water-saving
innovations, and applied the model to a geographic area in Germany. Agents are households
with certain lifestyles, represented by demographic and behavioral characteristics. They use
two different decision rules to determine adoption: a cognitively demanding decision rule
representing a deliberate decision and a simple decision heuristic. The particular decision
rule to use is selected based on the agent’s type and technology category. The deliberate
decision-making algorithm is based on multi-attribute subjective utility maximization that
integrates attitude, social norm, and perceived behavioral control. The heuristic decision rule
makes decisions in greedy order of evaluation criteria based on innovation characteristics
and social norms. Finally, if no clear decision can be made, agents imitate their peers, who
are defined through a variation of a small-world network (Watts and Strogatz 1998) which
captures spatial proximity and lifestyle affinity in determining links among agents. The
model was calibrated using data from a survey according to the framework of the Theory
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of Planned Behavior (Ajzen 1991), with the importance of different decision factors derived
by structural equation models or linear regressions for lifestyle groups. The model was
validated using independent market research data at the household level. In addition, due to
the lack of independent aggregated diffusion data, results of the empirical survey were used
for validation.

Sopha et al. (2013) present an agent-based model for simulating heating system adoption
in Norway. Their model extends TPB to consider several contributing factors, such as house-
hold groups, intention, attitudes, perceived behavioral control, norms, and perceived heating
system attributes. Households are grouped using cluster analysis based on income level and
basic values available in the survey data to approximate the influence of lifestyle on attitudes
towards a technology. Attribute parameters are then estimated using regressions for each
household cluster based on the household survey. Moreover, motived by the meta-theory of
consumer behavior (Jager 2000), themodel assumes that a household agent randomly follows
one of four decision strategies: repetition, deliberation, imitation, and social comparison, in
accordance with empirical distribution based on survey data. Notably, this model is vali-
dated using independent data that is not used for calibration, examining how well simulation
reproduces actual system behavior at both macro and micro level.

Rai and Robinson (2015) develop an empirically grounded agent-based model of residen-
tial solar photovoltaic (PV) diffusion to study the design of PV rebate programs. The model
is motived by TPB and assumes that two key elements determine adoption decision: attitude
and (perceived) control. The authors calibrate population-wide agent attitudes using survey
data and spatial regression. Following the opinion dynamics model in Deffuant et al. (2002a),
at each time-step, agents’ attitudes about the technology and their uncertainties are adjusted
through interactions with their social network neighbors following the relative agreement
protocol. Social influence is captured by households situated in small-world networks, with
most connections governed by geographic and demographic proximity. In the “control” mod-
ule, an agent i compares its perceived behavioral control pbci with the observed payback at
the current time period PPit . Then, if the agent exceeds its attitude threshold, it adopts when
PPit < pbci . pbci for each agent i , is calculated as a linear sum of financial resources, the
amount of sunlight received, and the amount of roof that is shaded, while PPit is calculated
based on electricity expenses offset through the use of the solar system, the price of the system,
utility rebates, federal investment tax credit, and annual system electricity generation. The six
model parameters used to specify the social network, opinion convergence, the distribution
of the behavioral control variable, and the global attitude threshold value were calibrated by
an iterative fitting procedure using historical adoption data. The model was first validated
in terms of predictive accuracy, comparing predicted adoption with empirical adoption level
for the time period starting after the last date for the calibration dataset. Moreover, temporal,
spatial, and demographic validation were conducted. However, validation was focused on
aggregate (macro), rather than individual (micro) behavior.

Jensen et al. (2016) develop an agent-based model to assess energy-efficiency impacts of
an air-quality feedback device in a German city. A household agent makes two decisions:
whether to adopt a feedback device andwhether to practice a specific energy-saving behavior.
The model involves simulating both the adoption of the feedback device and the heating
behavior respectively. Two diffusion processes are connected based on the observation that
the feedback device changes an agent’s heating behavior, and eventually will form a habit.
In the simulations, household agents are generated based on marketing data on lifestyle, and
initial adopters of the heating behavior are selected based on a survey. The adoption of an
energy-efficient heating behavior is triggered by external events, whose rate is estimated by
historical data using Google search queries. Their survey reveals that both information and
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social influence drive behavior adoption. This insight is integrated into a decision-making
model following the theory of planned behavior (TPB), in which information impacts the
agent’s attitude in each simulation step.On the other hand, the diffusionmodel of the feedback
device is an adaptation of an earlier model also based on TPB. An adopter of the device is
assumed to adopt the desired heating behavior with a fixed probability, which is informed by
an empirical study. The space of model parameters is reduced by applying a strategy called
“pattern-oriented modeling”, which refines the model by matching simulation runs with
multiple patterns observed from empirical data (Grimm et al. 2005). In their experiments,
the authors calibrated several different models using empirical data and aimed to quantify
the effect of feedback devices by comparing results generated by these models. However, no
rigorous model validation is presented.

2.3.3 Theory of emotional coherence

When it comes to explaining and predicting human decisions in a social context, some
computational psychology models also take emotional factors into account, which are often
neglected byTPB-basedmodels.Wolf et al. (2012) propose an agent-basedmodel of adoption
of electric vehicles by consumers in Berlin, Germany, based on the Theory of Emotional
Coherence (TEC). The parameters of the model were derived based on empirical data from
focus groups and a representative survey of Berlin’s population. In particular, the focus group
provided a detailed picture of people’s needs and goals regarding transportation; the survey
was designed to generate quantitative estimates of the beliefs and emotions people associate
with specificmeans of transportation. The attributes of the agents include age, gender, income,
education, residential location, lifestyle, and a so-called social radius, and are obtained based
on the survey data. The social network structure is generated by similarities between these
characteristics following the theory of homophily (McPherson et al. 2001); specifically, the
likelihood of two individuals communicating with one other is a function of their similarity
in terms of demographic factors. To validate the predictions made by the model, the authors
regressed empirical data related to actual transportation-related decisions (e.g., weekly car
usage) from the survey on the activation parameters resulting from simulations. However,
validation did not use independent data.

2.3.4 Consumat model

The Consumat Model is a social psychological framework, in which consumer agents switch
among several cognitive strategies—commonly, comparison, repetition, imitation, and delib-
eration—asdetermined byneed satisfaction and their degree of uncertainty (Jager et al. 2000).
Schwoon (2006) uses an agent-based model (ABM) to simulate possible diffusion paths of
fuel cell vehicles (FCVs), capturing complex dynamics among consumers, car producers,
and filling station owners. In their model, the producers offer heterogeneous but similar cars,
deciding in each period whether to change production to FCVs. Consumers have varying
preferences for car attributes, refueling needs, and social influence factors. Although in a
typical consumat approach (Janssen and Jager 2002), consumers follow one of four cogni-
tive strategies on the basis of their level of need satisfaction and uncertainty, the author rules
out repetition and imitation and argues that need satisfaction is rather low in their case. The
consumer agent is assumed to maximize total expected utility, which is expressed as a func-
tion of car price, tax, the closeness between preferences and car characteristics, social need,
as determined by the fraction of neighbors adopting each product type, and availability of
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hydrogen. In the model, individual preferences may evolve with time to be more congruent
with the “average car”, as determined by a weighted average of attributes of cars sold in
the previous period, where weights correspond to market shares. The model is calibrated
by trying to match main features of the German auto market. The network structure gov-
erning social influence is assumed to form a torus. The model does not attempt quantitative
validation.

2.3.5 The LARA model

LARA is the short for Lightweight Architecture for boundedly Rational Agents, a simpli-
fied cognitive agent architecture designed for large-scale policy simulations (Briegel et al.
2012). Comparing with existing complex psychological agent frameworks, LARA is more
generalizable and easier to implement. We review two recent efforts motivated by the LARA
architecture and grounded in empirical data.

Krebs et al. (2013) develop an agent-based model to simulate individual’s provision of
neighborhood support in climate change adaptation. In their model, agents are assigned to
lifestyle groups and initialized using spatial and societal data. Motivated by LARA, an agent
makes a decision in one of three modes: deliberation, habits, and exploration. In deliberation,
an agent compares and ranks available options in terms of utility, which is the weighted sum
of four goals: striving for effective neighborhood support, being egoistic, being altruistic, and
achieving social conformity. The goal weights, which are different among lifestyle groups,
are set based on expert ratings and the authors’ prior work. A probability choice model is
used to choose the final option when multiple better options are available. An agent acts
in deliberation mode if no experience is available (habitual behavior is not possible) and
shifts to an exploratory mode with a predefined small probability. The network in which the
agents are embedded is generated using lifestyle information. Simulation runs for an initial
period from 2001 to 2010 provide plausible results on behavioral patterns in cases of weather
changes. From 2011 to 2020, the authors examine the effects of two intervention strategies
that mobilize individuals to provide neighborhood support. Some model parameters remain
uncalibrated, and the entire model is not validated due to a lack of empirical data at the macro
level.

Krebs and Ernst (2015) develop an agent-based spatial simulation of adoption of green
electricity in Germany. Each agent represents a household deciding to select between “green”
and “gray” energy providers. Every agent is characterized by its geographical location and
lifestyle group. Agents are initialized and parameterized by empirical data from surveys,
psychological experiments, and other publicly available data. Following LARA, agents are
assumed to make decisions either in a deliberative or habitual mode. Default agent behavior
is habitual, and the agent transitions to a deliberative mode when triggered by internal and
external events, such as a price change, personal communication, cognitive dissonance, need
for cognition, andmedia events. An agent chooses an action that maximizes utility, which is a
weighted sum of four goals: ecological orientation, economic orientation, social conformity,
and reliability of provision. The goal weights depend on the lifestyle group and are derived
from a survey and expert rating (Ernst and Briegel 2017). An artificial network that connects
the agents is generated based on lifestyle and physical distance (Ernst andBriegel 2017).Once
an agent decides to adopt green electricity, it chooses a service brand that is already known.
The diffusion of the awareness of the brand is characterized by a simple word-of-mouth
process. Validation focuses on two state variables of agent behavior: selected electricity
provider and awareness of the brand, which involves comparing simulation results with
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historical data both temporally and spatially starting from aggregate to the individual level.
Unfortunately, validation was not conducted using independent data.

2.4 Heuristic models

Heuristic adoption models are often used when modelers are not aware of any established
theories for agent decision-making in the studied application. These models tend to give
us an impression of being “ad-hoc”, since they are not built on any grounded theories.
More importantly, unlike the cognitive agent models such as the theory of planned behavior,
there is no established or principled means to estimate model parameters. Therefore, model
parameters are often selected in order to match simulated output against a realistic adoption
level. Although heuristic-based model appears to be an inaccurate representation of agent
decision-making, they are easy to implement and interpret.

Van Vliet et al. (2010) make use of a take-the-best heuristic to model a fuel transportation
system to investigate behavior of fuel producers and motorists in the context of diffusion of
alternative fuels. In the model, producers’ plant investment decision is determined by simple
rules, and the same plant can produce multiple fuel types. Motorists are divided into several
subgroups, each having distinct preferences. Each motorist is assumed to choose a single
fuel type in a given year. Each fuel is assigned four attributes: driving cost, environment,
performance, and reputation. Motorist preferences in the model are represented by two fac-
tors: (1) priorities, or the order of perceived importance of fuel attributes, and (2) tolerance
levels, which determine how much worse a particular attribute of the corresponding fuel can
be compared to the best available alternative to maintain this fuel type under consideration.
The decision heuristic then successively removes the worst fuel one at a time in the order
of attribute priorities. Due to the difficulty of obtaining actual preferences of motorists, the
authors used the Dutch consumer value dispositions from another published model in litera-
ture as a proxy to parameterize the model. However, the model was not rigorously calibrated
or validated using empirical data.

Zhao et al. (2011) propose a two-level agent-based simulation modeling framework to
analyze the effectiveness of policies such as subsidies and regulation in promoting solar pho-
tovoltaic (PV) adoption.The lower-levelmodel calculates paybackperiodbasedonPVsystem
electricity generation and household consumption, subsidies, PV module price, and electric-
ity price. The higher-level model determines adoption choices as determined by attributes
which include payback period, household income, social influence, and advertising. A pivotal
aspect of the model is the desire for the technology (PV), which is formulated as a linear
function of these four factors, and an agent adopts if the desire exceeds a specified threshold.
Survey results from a prior study were used to derive a distribution for each factor, as well as
the membership function in a fuzzy set formulation. The agents in the model were initialized
using demographic data, along with realistic population growth dynamics based on census
data. Moreover, calibration of threshold value was conducted to match simulated annual rate
of PV adoption with historical data. However, the model was not quantitatively validated
using independent data.

A more complex TOPSIS (Technique for Order Preference by Similarity to Ideal Solu-
tion) model is a decision heuristic which selects an option from several alternatives that is
the closest to the ideal option and the farthest from the worst possible option. Kim et al.
(2011) present agent-based automobile diffusion model using a TOPSIS approach to sim-
ulate market dynamics upon introduction of a new car in the market. The model integrates
three determinants of purchasing behavior: (1) information offered by mass media, (2) rela-
tive importance of attributes to consumers, and (3) social influence. Individual agents rank
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products by considering multiple product attributes and choosing a product closest to an
ideal. A survey was conducted to estimate consumers’ weights on the car attributes and the
impact of social influence. In the simulations, diffusion begins with innovators who try out
new products before others; once they adopt, their social network neighbors become aware of
these decisions, with some deciding to adopt, and so on. A small-world network structure was
assumed for this virtual market, and choices of rewiring and connectivity were determined
by the model calibration step through comparing simulated results with historical monthly
sales volumes of three car models. However, the model was not validated using independent
data.

2.5 Statistics-based models

Statistics-based models rely on statistical methods to infer relative contribution of observable
features towards one’s decision whether to adopt. The estimated model is then integrated into
an ABM. We review three subcategories of statistics-based methods for agent-based models
of innovation diffusion: conjoint analysis, discrete choice models, and machine learning.

2.5.1 Conjoint analysis

Conjoint analysis is a statistical technique used in market research to determine how much
each attribute of a product contributes to consumer’s overall preference. This contribution is
called the partworth of the attribute. Combining with feature values of innovation obtained
from field study, one can construct a utility function accordingly.

Garcia et al. (2007) utilize conjoint analysis to instantiate and calibrate an agent-based
marketing model using a case study of diffusion of Stelvin wine bottle screw caps in New
Zealand. With a particular emphasis on validation, the overall work follows Carley (1996)’s
four validation steps: grounding, calibration, verification, and harmonizing (the latter not
performed, but listed as future work) to properly evaluate the model at both micro and macro
levels. The model includes two agent types: wineries and consumers. In each period the
wineries set the price, production level, and attributes of screw caps as a function of con-
sumer demand. Consumers, in turn,make purchase decisions following their preferences. The
model is calibrated using conjoint analysis, inferring partworths which determine consumer
preferences in the model. Aggregate stylized facts were then replicated in the verification
step. The work emphasizes the value of calibration, but pays less attention to validation,
which is merely performed at a face level rather than quantitatively.

Vag (2007) presents a dynamic conjoint method that enables forecasts of future product
preferences. The consumer behavior model considers many factors, including social influ-
ence, communication, and economicmotivations. The author surveys behavior of individuals,
such as their communication habits, and uses conjoint analysis to initialize preferences in
the ABM. Notably, in this model agent priorities depend on one another, and the resulting
social influence interactions may lead to large-scale aggregate shifts in individual priorities.
To demonstrate the usability of their model, the study utilized empirical data on product
preferences (in this case, preferences for mobile phones), consumer habits, and communica-
tion characteristics in a city in Hungary. Calibration of this model was only based on expert
opinion and comparative analysis, rather than quantitative comparison with real data, and no
quantitative validation was performed.

Zhang et al. (2011) develop an agent-basedmodel to study the diffusion of eco-innovations,
which in their context are alternative fuel vehicles (AFVs). The model considers interdepen-
dence among the manufacturers, consumers, and governmental agencies in the automotive
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industry. The agents representing manufacturers choose engine type, fuel economy, vehicle
type, and price, following a simulated annealing algorithm, to maximize profit in a compet-
itive environment until a Nash equilibrium is reached (Michalek et al. 2004). The consumer
agents choose which products to purchase. The partworth information in the utility func-
tion was derived by choice-based conjoint analysis using an empirical survey from Garcia
et al. (2007). In particular, the probability of a consumer choosing a vehicle is formulated
as a logit function of vehicle attributes, word-of-mouth, and domain-specific knowledge.
The utility is modeled as a weighted sum of attributes, and parameters/partworth are esti-
mated using hierarchical Bayes methods. The agent acting as “government” chooses policies
aimed at influencing the behavior of both manufacturers and consumers. Model calibration
involved conjoint analysis. However, the authors found that the ABM tended to overesti-
mate the market shares of alternative fuel vehicles, which motivated them to adjust model
parameters and to linearize the price parthworth in order to ensure that aggregate demand
decreases with the price. Like Garcia et al. (2007), the authors follow the four steps of
validation (Carley 1996). However, validation does not use data independent from calibra-
tion.

Lee et al. (2014) introduce an agent-based model of energy consumption by individual
homeowners to analyze energy policies in the U.K. The model utilizes historical survey data
and choice-based conjoint analysis to estimate the weight of a hypothetical utility function,
defined as the weighted sum of attributes. In the simulation, moving and boiler break-down
events are assumed to trigger a decision by the household agent. In this case, a particular
alternative is selected if its utility is higher than all other alternatives as well as the status
quo option. The model was populated with initial data based on a survey conducted in the
U.K., and each agent was matched to a household type which can be further mapped to
energy demand using energy consumption estimates. The authors then combined energy
demand with fuel carbon intensity to determine annual household emissions. The model was
calibrated by adjusting the weights in the decision model to match historic installation rates
from 1996 to 2008 for loft insulation and cavity wall insulation. The model was not validated
using independent data.

Stummer et al. (2015) devise an agent-based model to study the diffusion of multiple
products. Each product is characterized by a number of attributes determined by expert
focus group discussion. True performance of each product attribute is unknown to con-
sumers, and each agent, therefore, keeps track of the distribution of attribute values based
on information previously received. This information is updated based on interactions with
peers, advertising, or direct experience. Consumer agent behavior is governed by a set of
parameters that capture heterogeneous preferences and mobility behavior. Agents have addi-
tive multi-attribute utilities, the weights of which were obtained from survey data using
conjoint analysis. The authors adapt the preferential attachment algorithm introduced by
Barabási et al. (1999) to generate networks in which the attachment probability depends
on both node degree and geographic distance between nodes. Network parameters were
determined by taking into account additional information revealed in the consumer sur-
vey, such as the number of social contacts and communication frequency. An agent decides
to purchase a product which maximizes utility. The model defines each advertising event
to communicate a set of product attributes, which either increase product awareness or
impact customer preferences. The model was validated extensively following Knepell and
Arangno (1993), including conceptual validity, internal validity, micro-level external valid-
ity, macro-level external validity, and cross-model validity. The weakness of validation,
however, is that it is only performed as an in-sample exercise without using independent
data.
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2.5.2 Discrete choice models

The discrete choice modeling framework, which originates in econometrics, is used to
describe, explain, and predict agent choices between two or more discrete alternatives (Train
2009). The approach has a wide range of applications, and we review several efforts targeted
specifically at innovation diffusion.

Galán et al. (2009) design an agent-basedmodel to analyzewater demand in ametropolitan
area. Thismodel is an integration of several sub-models, includingmodels of urban dynamics,
water consumption, and technological and opinion diffusion. The opinion diffusion model
assumes that an agent’s attitude towards the environment determines its water consumption,
i.e., an non-environmentalist would use more water than an environmentalist. Accordingly, it
is assumed that each agent can be in two states: environmentalist (E) or non-environmentalist
(NE). The choice of a state depends on the agent’s current state, the relative proportion of E
and NE neighbors, and an exogenous term measuring the pressure towards E behavior. Tran-
sition probabilities between states E and NE are given in form of logistic functions. However,
rather than using empirical data to estimate parameters of these functions, the authors param-
eterized the behavior diffusion model with reference to models in prior literature for other
European cities. To determine adoption of water-saving technology, the opinion diffusion
model is coupled with the technological diffusion model, which is implemented by a simple
agent-based adaptation of the Bass model following Borshchev and Filippov (2004). The
model was validated qualitatively by domain experts, quantitatively calibrated based on the
first quarter of 2006, and validated by comparing the model with actual adoption in the fol-
lowing two quarters. The authors demonstrate that simulation results successfully replicate
the consequence of a water-saving campaign on domestic water consumption.

Dugundji and Gulyás (2008) propose a computational model that combines economet-
ric estimation with agent-based modeling to study the adoption of transportation options
for households in a city in Netherlands. The presented discrete choice modeling framework
aims to address interactions within different social and spatial network structures. Specifi-
cally, agent decision is captured using a nested logit model, which enables one to capture
observed and unobserved behavior heterogeneity. Feedback effects among agents are intro-
duced by adding a linear term (a so-called field variable) that captures proportions of an
agent’s neighbors making each decision to each agent’s utility function. Because survey data
on interactions between identifiable individuals was unavailable, this term only captured
aggregate interactions among socioeconomic peers. The authors investigated simulated tran-
sition dynamics for the full model with two reference models: the first a nested logit model
with a global field variable only and a fully connected network, and the second a multinomial
logit model which is a special case to the full model. They found that simulated dynamics
differ dramatically between the models. Given this lack of modeling robustness, no further
validation was undertaken.

Tran (2012) develops an agent-based model to investigate energy innovation diffusion.
Agent behavior in thismodel is determined by the relative importance of technology attributes
to the agents, and social influence. Social influence, in turn, takes two forms: indirect influence
coming from the general population, and direct influence of social network neighbors. The
author drew on ABM studies in the marketing literature, and formulated the adoption model
as Prob(t) = 1−(1−Pi j )(1−Qi j )

Ki j , where Pi j captures individual choice using a discrete
choice model of consumer decision-making, in which an agent’s utility is defined as an inner
product of coefficients and attributes. Coefficients are a random vector, with distribution
different for different agents, capturing preference heterogeneity. Qi j and Ki j is the indirect
and direct network influence, respectively, captured as a function of the number of adopters at
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decision time. While the model was evaluated using simulation experiments, and the nature
of the model makes it well suited for empirically grounded parameter calibration, it was not
in actuality quantitatively calibrated or validated using empirical data.

2.5.3 Machine learning models

Machine learning (ML) is a sub-area of computer science that aims to develop algo-
rithms that uncover relationships in data. Within a supervised learning paradigm which
is of greatest relevance here, the goal is further to develop models that accurately predict
the value of an outcome variable for unseen instances. To do so, a computer program is
expected to recognize patterns from a large set of observations, referred to as a training
process that is grounded in statistical principles and governed by intelligent algorithms,
and make predictions on new, unseen, instances. This category of methods has recently
drawn much attention in academia and industry due to tremendous advances in predic-
tive efficacy on important problems, such as image processing and autonomous driving.
Combining machine learning with agent-based modeling seems promising in the study of
innovation diffusion since the two can complement each other. The former is specialized in
building a high-fidelity predictive models, while the latter captures dynamics and complex
interdependencies. Of particular relevance to combining ML and ABM is the application of
machine learning to model and predict human behavior. Interestingly, relatively few attempts
have been made to date to incorporate ML-based models of human behavior within ABM
simulations.

Sun and Müller (2013) develop an agent-based model that features Bayesian belief net-
works (BBNs) and opinion dynamics models (ODMs) to model land-use dynamics as they
relate to payments for ecosystem services (PES). The decision model of each household is
represented using a BBN, which were calibrated using survey data and based on discus-
sions with relevant stakeholders, and incorporate factors such as income and land quality.
Social interactions in decision-making are captured by ODM. The modeling framework
was applied to evaluate China’s Sloping Land Conversion Program (SLCP), considered
among the largest PES programs. SLCP was designed to incentivize reforestation of land
through monetary compensation. In their model, farmers make land-use decisions whether
or not to participate in the SLCP program based on internal beliefs and external influ-
ences. External influences adjust internal beliefs cumulatively using a modified Deffuant
model (Deffuant et al. 2002a) within a community-based small-world social network. Initial
model structures were obtained using a structural learning algorithm, with results augmented
using qualitative expert knowledge, resulting in a pseudo tree-augmented naive Bayesian
(TAN) network. The final BBN model was validated by using a sensitivity analysis, and
measuring prediction accuracy and area under the curve (AUC) of the receiver operating
characteristics (ROC) curve on a holdout test data set at both household and plot level.
A crucial limitation of this work is that only the BBN model was carefully validated;
the authors did not validate the full simulation model at either the micro or macro lev-
els.

Zhang et al. (2016) propose a data-driven agent-based modeling (DDABM) framework
for modeling residential rooftop solar photovoltaic (PV) adoption in San Diego county.
In this framework, the first step is to use machine learning to calibrate individual agent
behavior based on data comprised of individual household characteristics and PV purchase
decisions. These individual behavior models were validated using cross-validation meth-
ods to ensure predictive efficacy on data not used for model calibration, and were then
used to construct an agent-based simulation with the learned model embedded in artificial
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agents. In order to ensure validation on independent data, the entire time series data of indi-
vidual adoptions was initially split along a time dimension. Training and cross-validation
for developing the individual-level models were performed only on the first (early) por-
tion of the dataset, and the aggregate model was validated by comparing its performance
with actual adoptions on the second, independent time series, into the future relative to the
calibration data set. The authors thereby rigorously demonstrate that the resulting agent-
based model is effective in forecasting solar adoption both at the micro and macro levels.
To our best knowledge, this work proposed the first generic principled framework that
combines ML and ABM in study of innovation diffusion. Unlike most ABM studies we
have reviewed, DDABM has the following features: (1) it does not make any assumptions
on the structural features of social network, relying entirely on a data-driven process to
integrate most predictive spatial and social influence features into the individual adoption
model; (2) it does not rely on matching simulated dynamics with the empirical obser-
vations to calibrate the model, but instead parameterizes the model through a far more
efficient statistical learning method at the level of individual agent behavior; and (3) val-
idation is performed on independent data to evaluate the predictive effectiveness of the
model. Moreover, validation is not only done at the macro-level by comparison with actual
adoption traces, but also at the micro-level by means of the simulated likelihood ratio rel-
ative to a baseline model. To further justify the usefulness of ML-base approach, Zhang
et al. (2016) actually implement and compare their model with another agent-based model
of rooftop solar adoption developed by Palmer et al. (2015), with parameters calibrated
on the same dataset following the general aggregate-level calibration approach used by
them. The result is very revealing, as it strongly suggests that aggregate-level calibration
is prone to overfit the model to data, an issue largely avoided by calibrating individual agent
behavior.

2.6 Social influence models

Our last methodological category covers several models looking specifically at social influ-
ence. These models are quite simple, abstract, but prevalent in the theoretical study of
innovation diffusion. Our purpose of discussing these is that there have been several recent
efforts to calibrate these models using empirical data.

After analyzing an adoption dataset of Skype, Karsai et al. (2014) develop an agent-
based model to predict diffusion of new online technologies. Specifically, agents in their
model are characterized by three states: susceptible (S), adopter (A), and removed (R). Sus-
ceptible refers to people who may adopt the product later. Adopter agents have already
adopted. Finally, removed are those who will not consider adopting the product in the
future again. The transition from S to A is regulated by spontaneous adoption and peer-
pressure, from A to S by temporary termination, and from A to R by permanent termination,
each of which is parametrized by a constant probability which is identical for all users.
While some parameters, such as average degree and temporary termination probability, are
estimated directly from observations, the remaining parameters are determined by simul-
taneously fitting the empirical rates using a bounded nonlinear least-squares method. The
model is fit over a 5-year training period, and validation uses predictions over the last six
months of the observation period. However, validation is somewhat informal, since the
predictability of the model is evaluated on a part of the training data and there is no val-
idation of micro-behavior. In a later work using the same Skype data, Karsai et al. (2016)
develop a threshold-driven social contagion model with only two states: susceptible and
adopted. In addition, the model assumes that some fraction of nodes never adopt. The
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authors calibrated the value of this fraction by matching the size of the largest compo-
nent of adopters given by the simulations with real data. In addition, the model assumes
that susceptible nodes adopt with a constant probability, which is informed by empirical
analysis. In their simulations, nodes have heterogeneous degrees and thresholds, which
follow empirical distributions. However, validation was not performed using independent
data.

Herrmann et al. (2013) present two agent-based models of diffusion dynamics in online
social networks. The first ABM is motivated by the Bass model, but time is discretized and
each agent has two states: unaware and aware. At each time step, an unaware agent changes
state to aware as a function of two triggers: innovation arising from exogenous sources,
such as advertising, and imitation, which comes from observing decisions by neighbors. The
second model termed the independent cascade model, originating from Goldenberg et al.
(2001), has a similar structure to the agent-based Bass model, except that the imitation effect
is formulated as a single probability with which each aware neighbor can independently
change the state of an agent to aware. The author applied the two models in parallel to four
diffusion data sets from Twitter, and calibrated parameters using actual aggregate adoption
paths. Notably, validation is only performed at macro-level as an in-sample exercise, and
shows that the two models behave similarly.

Using historical diffusion data of Facebook apps, Trusov et al. (2013) introduce an
approach that applies Bayesian inference to determine a mixture of multiple network struc-
tures. Notice that most ABMs we reviewed so far either assume a single underlying social
network (with parameters determined in model calibration) or generate artificial networks
based on empirical findings or social science theories. They first choose a collection of fea-
sible networks that represent the unobserved consumer networks. Then, a simple SIR model
[similar to the Bass ABM in Herrmann et al. (2013)] is used to simulate the diffusion of
products. The simulated time series are further transformed to multivariate stochastic func-
tions, which provide priors to the Bayesian inference model to obtain the posterior weights
on the set of feasible consumer networks. Like Herrmann et al. (2013), the adoption model is
calibrated from the aggregate output, rather than from observations of individual decisions.

Chica and Rand (2017) propose an agent-based framework to build decision support sys-
tem (DSS) for word-of-mouth programs. They developed a DSS to forecast the purchase of
a freemium app and evaluate marketing policies, such as targeting and reward. The model
captures seasonality of user activities by two probabilities for weekday and weekend respec-
tively. The initial social network is generated by matching the degree distribution of the real
network. Then, for each node, two weights are assigned to in- and out-edges, respectively,
turning the network into a weighted graph that represents the heterogeneous social influ-
ence among social neighbors. Specifically, two models are used to model the information
diffusion. One is the Bass-ABM (Rand and Rust 2011); the other is a contagion model (a
threshold model but adding external influence). The parameters of the model were calibrated
by a genetic algorithm (Stonedahl and Rand 2014), in which the fitness is defined based
on the difference of simulated adoption from the historical adoption trajectory. Notably, the
model was validated by a hold-out dataset, which is independent of the training data. For
example, the entire 3 month period spanned by the data was divided into two: first 60 days
for training, the last 30 days for validation.

The independent cascade model used by Herrmann et al. (2013) and the threshold model
used by Chica and Rand (2017) are significant insofar as these connect to a substantial
literature that has recently emerged within the Computer Science community on information
diffusion, whereby information (broadly defined) spreads over a social network. We make
this connection more precisely in Sect. 4 below.
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3 Categorization of innovation diffusion models by application

Thus far, we followed a categorization of agent-basedmodels of innovation diffusion focused
on methods by which agent behavior is modeled. First, we observe that methods range
from sophisticated mathematical optimization models (Sect. 2.1), to economics-based mod-
els (Sect. 2.2), to even simpler models based on heuristics for representing agent behavior
(Sect. 2.4). While economic factors are dominant concerns in some applications, others
emphasize the cognitive aspects of human decision-making (Sect. 2.3) and are frequently
used to model influence over online social networks (Sect. 2.6). Second, we note that the
method chosen to capture agent behavior also impacts the techniques used to calibrate model
parameters from data. For example, cognitive models are often constructed based on detailed
behavior data collected fromfield experiments and surveys,whereasmodels of agent behavior
based on statistical principles rely on established statistical inference techniques for model
calibration based on individual behavior data that is either observational or experimental.
Other modeling approaches within our six broad categories often do not use data to cali-
brate individual agent behavior, opting instead to tune model parameters in order to match
aggregate adoption data.

We now offer an alternative perspective to examine the literature on empirical ABMs
of innovation diffusion by considering applications—that is, what particular innovation is
being modeled. A breakup of existing work using this dimension is given in Table 2. As
shown in the first column,we group applications by broad categories: agricultural innovations
and farming, sustainable energy and conservation technologies, consumer technologies and
innovations, information technologies and social goods. Interestingly, the first two categories
account for more than half of the publications in literature. This likely reflects the history of
ABM as an interdisciplinary modeling framework for computational modeling of issues that
are of great interest in social science. A closely related factor could be the relatively high
availability of data in these applications generated by social scientists (e.g., through the use of
surveys). Another interesting observation that arises is methodological convergence for given
applications: relatively few applications have been modeled within different methodological
frameworks as categorized above. Future research may explore the use of different methods
for same application. Furthermore, comparison of different modeling methods is rare within
a single work [except in Dugundji and Gulyás (2008) and Zhang et al. (2016)], although such
a methodological cross-validation is of importance as emphasized by some authors (Carley
1996; Rand and Rust 2011).

4 Information diffusion models

Online social networks have emerged as an crucial medium of communication. It does not
only allow users to produce, exchange, and consume information at an unprecedented scale
and speed, but also speeds the diffusion of novel and diverse ideas (Guille et al. 2013; Bak-
shy et al. 2012). The emergence of online social networks and advances in data science
and machine learning have nourished a new field: information diffusion. The fundamental
problem in information diffusion is to model and predict how information is propagated
through interpersonal connections over social networks using large-scale diffusion data. In
fact, several authors have reviewed the topic of information diffusion over online social net-
works (Bonchi 2011; Guille et al. 2013; Shakarian et al. 2015). Our aim is not to provide
a comprehensive review of this same topic. Instead, we are interested in building connec-
tions between the agent-based modeling approach to innovation diffusion, and the modeling
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Table 2 Categorization of surveyed work by applications

Category Application Method Citation

Agricultural
innovations and
farming

Agricultural
innovations

Mathematical
programming

Berger (2001), Berger et al.
(2007), Schreinemachers
et al. (2007, 2009, 2010)
and Alexander et al. (2013)

Economics (utility) Holtz and Pahl-Wostl (2012)

Organic farming Cognitive model
(deffuant)

Deffuant et al. (2002b)

Cognitive model (TPB,
deffuant)

Kaufmann et al. (2009)

Biogas plant Economics (profit) Sorda et al. (2013)

Payments for
ecosystem services

Machine learning Sun and Müller (2013)

Sustainable energy
and conservation
technologies

Water-saving
technology

Cognitive model (TPB)
Schwarz and Ernst (2009)

Discrete choice model Galán et al. (2009)

Heating system Cognitive model (TPB) Sopha et al. (2013)

Conjoint analysis Lee et al. (2014)

Economics (cost) Faber et al. (2010)

Solar photovoltaic Heuristic Zhao et al. (2011)

Economics (utility) Palmer et al. (2015)

Cognitive model (TPB,
deffuant)

Rai and Robinson (2015)

Machine learning Zhang et al. (2016)

Fuel cell vehicles Cognitive model
(consumat)

Schwoon (2006)

Energy innovation Discrete choice model Tran (2012)

Electric vehicles Cognitive model (TEC) Wolf et al. (2012)

Economics (utility) Plötz et al. (2014)

Economics (utility) McCoy and Lyons (2014)

Alternative fuel
vehicles

Conjoint analysis Zhang et al. (2011)

Alternative fuels Heuristic Van Vliet et al. (2010)

Economics (utility) Günther et al. (2011)

Canalysis Stummer et al. (2015)

Green electricity Cognitive model (LARA) Krebs and Ernst (2015) and
Ernst and Briegel (2017)

Air-quality feedback
device

Cognitive model (TPB) Jensen et al. (2016)

Consumer
technologies and
innovations

Wine bottle closures Conjoint analysis Garcia et al. (2007)

Mobile phones Conjoint analysis Vag (2007)

Transportation mode Discrete choice model Dugundji and Gulyás (2008)

New cars Fuzzy TOPSIS (heuristic)
model

Kim et al. (2011)
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Table 2 continued

Category Application Method Citation

Movie Economics (utility) Broekhuizen et al. (2011)

Information
technologies

Skype Social contagion model Karsai et al. (2014, 2016)

Twitter Independent cascade
model

Herrmann et al. (2013)

Facebook app Social contagion model Trusov et al. (2013)

Freemium app Social contagion model Chica and Rand (2017)

Social goods Neighborhood support Cognitive model (LARA) Krebs et al. (2013)

methods in the field of information diffusion. Indeed, researchers in the ABM community
have paid little attention to the existing methods for modeling information diffusion, and
especially in the played by data science in this field, which has significant implications for
ABM model calibration, as we discuss below.

4.1 Two basic models of information diffusion

Compared to agent adoption models in Sect. 2, the decision process in the information
diffusion literature is typically very simple, following predominantly the social influence
models. The two most common models in information diffusion are Independent Cascades
(IC) (Goldenberg et al. 2001) and Linear Threshold (LT) models (Granovetter 1978). These
models are defined on directed graphs where activation is assumed to be monotonic: once a
node is active (e.g., adopted, received information), it cannot become inactive. The diffusion
process in both models starts with a few active nodes and progresses iteratively in a discrete
and synchronous manner until no new nodes can be infected. Specifically, in each iteration,
a new active node in the IC model is given a single chance to activate its inactive neighbors
independently with an exogenously specified probability (usually represented by the weight
of the corresponding edge). In the LT model, in contrast, an inactive node will become active
only if the sum of weights of its activated neighbors exceeds a predefined node-specific
threshold, which is typically randomly assigned between 0 and 1 for each network node.
Note that in both models a newly activated node becomes active immediately in the next
iteration. From an agent-based perspective, both IC and LT are generative models which
define two diffusion mechanisms.

4.2 Learning information diffusion models

Several efforts use empirical data to calibrate the parameters of the LT and IC models. Saito
et al. (2011) propose an asynchronous IC (AsIC) model, which not only captures temporal
dynamics, but also node attributes. They show how the model parameters can be estimated
from observed diffusion data using maximum likelihood estimation (MLE). The AsICmodel
closely follows the ICmodel, but additionally introduces a time delay before a newly activated
node becomes active. The time delay is assumed to be exponentially distributed with a
parameter that is defined as an exponential function of a feature vector (a composition of
attributes associated with both nodes and edges). The transmission probability is then defined
as a logit function of the feature vector. The data is given in the format of “diffusion traces”,
and each trace is a sequence of tuples which specify activation time for a subset of nodes.
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To learn the model using this data, the authors define the log-likelihood of the data given
the model. The authors then demonstrate how to solve the resulting optimization problem
using expectation-maximization (EM). While the proposed model is promising to be used
for prediction, the learning method was only tested using synthetic data.

Guille andHacid (2012) showhow to parameterize theAsICmodel usingmachine learning
methods based on Twitter data. In their model, the diffusion probability for information at
any given time between two users is a function of attributes from three dimensions: social,
semantic, and time, which group features with respect to social network, content and temporal
property respectively. Four different classifiers were trained and compared in terms of cross-
validation error: C4.5 decision tree, linear perceptron, multilayer perceptron, and Bayesian
logistic regression. The last model mentioned above was finally used for prediction. Notably,
time-delay parameterwas determined separately in thiswork by comparing simulation results
with actual diffusiondynamics,which is the samecalibrationmethod commonly used inABM
of innovation diffusion. Unlike (Saito et al. 2011), where all model parameters are inferred
by MLE, here only a subset of model parameters are estimated through established machine
learning techniques, but the rest are calibrated by simulations. Their evaluation shows that the
model accurately predicts diffusion dynamics, but fails to accurately predict the volume of
tweets. In our ABM jargon, the model performs well at macro-level, but poorly at micro-level
validation (Carley 1996). Another limitation of this work is that validation is only performed
as an in-sample exercise, rather than using out-of-sample data.

Galuba et al. (2010) propose two diffusion models with temporal features that are used to
predict user re-tweeting behaviors on Twitter. Both models define the probability for a user to
re-tweet a given URL to be a product of two terms: one is time-independent, the other is time-
dependent. Both have the same time-dependent part which follows a log-normal distribution,
but differ in the actual definitions of the time-independent part. In their first model termed
At-Least-One (ALO), the time-independent component is defined as the likelihood of at least
one of the causes: either one is affected by the agent it follows, or by the user tweets a URL
spontaenously. The second, Linear Threshold (LT), model, posits that a user re-tweets a URL
only if the cumulative influence from all the followees is greater than a threshold. The time-
independent component in this model is given by a sigmoid function. In order to calibrate
and validate the model, the data set was split along the time dimension into two parts. The
model was calibrated by choosing parameters that optimize the estimated F-score using the
gradient ascent method on the first (earlier) data set, and used to predict URL mentions in
the second (later) data set. Their results show that the LT model achieves the highest F-score
among all models and correctly predicts approximately half of URL mentions with lower
than 15% false positives.

While all research reviewed so far assumes known network structure, a number of efforts
deal with hidden network structures which must also be learned from data. The so-called
network inference problem is to infer the underlying network given a complete activation
sequence (Guille et al. 2013). Gomez Rodriguez et al. (2010) introduce a variant of the
independent cascade model (Kempe et al. 2003) adding time delay. Their problem is to find
a directed graph with at most k edges that maximizes the likelihood of a set of cascades for a
given transmission probability and parameters of the incubation distribution, which is solved
approximately using a greedy algorithm. Myers and Leskovec (2010) propose a cascade
model which is similar to Gomez Rodriguez et al. (2010) but allows distinct transmission
probabilities for different network edges. The goal is to infer the adjacencymatrix (referring to
the pairwise transmission probabilities) that maximizes the likelihood given a set of cascades,
which is accomplished by solving a convex optimization problem derived from the problem
formulation. Gomez Rodriguez et al. (2011) develop a continuous-time diffusion model that
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unifies the two-step diffusion process involving both a transmission probability and time delay
from Gomez Rodriguez et al. (2010) and Myers and Leskovec (2010). The pivotal value is
the conditional probability for a node i to be infected at time ti given that a neighboring node
j was infected at time t j , which is formulated as a function of the time interval (ti − t j ) and
parametrized by a pairwise transmission rate α j i . Survival analysis (Lawless 2011) is used
to derive the maximum likelihood function given a set of cascades, and they aim to find a
configuration of all transmission rates that maximizes the likelihood. While most network
inference algorithms assume static diffusionnetworks,GomezRodriguez et al. (2013) address
a network inference problem with a time-varying network. The resulting inference problem
is solved using an online algorithm upon formulating the problem as a stochastic convex
optimization.

4.3 Bridging information diffusion models and agent-based modeling of
innovation diffusion

The methodological framework of the information diffusion inference problems discussed
above is a natural fit for principled data-driven agent-based modeling. The information dif-
fusion models characterized by transmission probabilities and time delay are essentially
agent-based models. Given data of diffusion cascades, they can be constructed either using
only the temporal event (adoption) sequence, or using more general node features, social
network, content, and any other explanatory or predictive factors. In fact, ABM researchers
have started to apply similar statistical methods to develop empirical models (see Sect. 2.5).
Notably, as shown by Zhang et al. (2016), parametric probabilistic models of agent behavior
can be estimated from observation data using maximum likelihood estimation methods. In
addition, the approaches for network inference appear particularly promising in estimating
not only behavior for a known, fixed social influence network, but for estimating the influence
network itself, as well as the potentially heterogeneous influence characteristics.

A crucial challenge in translating techniques from information diffusion domains to inno-
vation diffusion is that in the latter only observes a single, partial adoption sequence, rather
than a collection of complete adoption sequences over a specified time interval. As a con-
sequence, the fully heterogeneous agent models cannot be inferred, although the likelihood
maximization can still be effectively formulated by limiting the extent of agent heterogeneity
[with the limit of homogeneous agents used by Zhang et al. (2016)]. In addition, the assump-
tions generally made in information diffusion models can also pose serious challenges to the
transferability of the approach to agent-based modeling. Recall that the information cascade
models often assume that an adopter has a single chance to affect its inactive neighbors
and a non-adopter is affected by its neighboring adopters independently. These assumptions
simplify the construction of the likelihood function, but further justification is needed for
them, especially when building empirical models that are expected to faithfully represent
realistic social systems and diffusion processes. Note that rules that govern the interactions
in agent-based models are quite flexible and can be very sophisticated, which is also one of
the major advantages of agent-based computing over analytical models. Although one may
be able to explicitly derive a parametric likelihood function given diffusion traces in more
complex settings than existing information diffusion models do, this is sure to be techni-
cally challenging. Moreover, solving the resulting MLE can be computationally intractable.
Therefore, to take advantage of MLE approach in information diffusion, ABM researchers
must make appropriate assumptions on agent interactions so that they can derive tractable
likelihood functions without significantly weakening the model’s explanatory and predictive
power.
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5 Discussion

5.1 Validation in agent-based modeling

As agent-based modeling is increasingly called for in service of decision support and predic-
tion, it is natural to expect them to be empirically grounded. An overarching consideration
in empirically grounded agent-based modeling is how data can be used in order to develop
reliable models, where reliability is commonly identified with their ability to accurately rep-
resent or predict the environment being modeled. This property of reliability is commonly
confirmed through model validation. In social science, a number of authors have contributed
to the topic of validation, from approaches for general computational models (Carley 1996),
to those focused on agent-based simulations (Xiang et al. 2005; Fagiolo et al. 2006; Garcia
et al. 2007; Ormerod and Rosewell 2009; Rand and Rust 2011), to specific types of agent-
basedmodels (Brown et al. 2005). Outside of social science, validation of simulation systems
has an even longer history of investigation (Knepell and Arangno 1993; Banks 1998; Kleijen
1999; Sanchez 2001). We now briefly review these approaches.

As previously mentioned, Carley (1996) suggests four levels of validation: ground-
ing, calibration, verification, and harmonizing. Grounding establishes reasonableness of a
computational model, including face validity, parameter validity, and process validity; cal-
ibration establishes model’s feasibility by tuning a model to fit empirical data; verification
demonstrates how well a model’s predictions match data; and harmonization examines the
theoretical adequacy of a verified computational model.

More recently, drawing on formalmodel verification and validation techniques from indus-
trial and systemengineering for discrete-event system simulations,Xiang et al. (2005) suggest
the software implementation of agent-based model has to be verified with respect to its con-
ceptual model, and highlight a selection of validation techniques from Banks (1998), such as
face validation, internal validation, historical data validation, parameter variability, predictive
validation, and Turing tests. Moreover, they suggest the use of other complementary tech-
niques, such as model-to-model comparison (Axtell et al. 1996) and statistical tests (Kleijen
1999; Sanchez 2001).

For agent-based models in economics, Fagiolo et al. (2006) proposed three different types
of calibration methods: the indirect calibration approach, the Werker–Brenner empirical
calibration approach, and the history-friendly approach. For example, Garcia et al. (2007)
adopt the last approach to an innovation diffusion study in New Zealand winery industry,
using conjoint analysis to instantiate, calibrate, and verify the agent-basedmodel qualitatively
using stylized facts.

For agent-based models in marketing, Rand and Rust (2011) suggest verification and vali-
dation as two key processes as guidelines for rigorous agent-based modeling. The use of term
“verification” follows common understanding in system engineering (Xiang et al. 2005). In
particular, the authors identify four steps for validation: micro-face validation, macro-face
validation, empirical input validation, and empirical output validation using stylized facts,
real-world data, and cross-validation. Note that the proposed validation steps echo the frame-
work byCarley (1996): thefirst two steps correspond to grounding, the third to calibration, and
the fourth roughly combines verification and harmonization. However, the cross-validation
method mentioned in Rand and Rust (2011) appears to suggest validation across models,
whereas Carley (1996) suggests validation across multiple data sets. The latter is consistent
with the use of cross-validation in statistical inference and machine learning (Friedman et al.
2001; Bishop 2006).
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Focusing specifically on empirically grounded ABMs, we suggest two pivotal steps in
ensuringmodel reliability in a statistical sense: calibration and validation. By calibration, we
mean the process of quantitatively fitting a set ofmodel parameters to data,whereas validation
means a quantitative assessment of the predictive efficacy of the model using independent
data, that is, using datawhichwas not utilized during the calibration step.Moreover, insofar as
amodel of innovation diffusion is concernedwith predicting future diffusion of an innovation,
we propose to further split the dataset along a temporal dimension, so that earlier data is used
exclusively for model calibration, while later data exclusively for validation. Starting with
this methodological grounding, we now proceed to identify common issues that arise in prior
research on empirically grounded agent-based models of innovation diffusion.

5.2 Issues in model calibration and validation

Agent-basedmodeling research has often been criticized for lack of acceptedmethodological
standard, hindering its acceptance in top journals bymainstream social scientists. One notable
protocol due to Richiardi et al. (2006) highlight four potential methodological pitfalls: link
with the literature, structure of the models, analysis, and replicability.

A careful examination of the empirical ABM work on innovation diffusion through this
protocol suggests that most of these issues have been addressed or significantly mitigated.
For example, nearly all of the reviewed papers present theoretical background, related work,
sufficient description ofmodel structure, sensitivity analysis of parameter variability, a formal
representation (e.g., UML,3 OOD4), and public access to source code. In spite of these
improvements, however, there are residual concerns about systematic quantitative calibration
and validation using empirical data.

We observe that different agent adoption models are calibrated differently. In the case of
cognitive agent models (Sect. 2.3), such as the Theory of Planned Behavior and theory of
emotional coherence, the individual model parameters are often estimated using survey data.
Similarly, statistics-based models (Sect. 2.5) can be parametrized using either experimental
or observational individual-level data. On the other hand, for conceptual models, such as
heuristic (Sect. 2.4) and economics-based models (Sect. 2.2), calibration is commonly done
by iteratively adjusting parameters to match simulated diffusion trajectory to aggregate-level
empirical data. Formally, we call the first kind of calibration “micro-calibration”, as it uses
individual data during calibration, whereas the second type “macro-calibration”, as it uses
aggregate-level data. Moreover, in many studies simulation parameters are determined using
both micro- and macro-calibration. For example, since network structure is often not fully
observed, and rules that govern agent interactions are assumed, parameters of these are
commonly macro-calibrated. Our first concern is about macro-calibration.

5.2.1 Issue I: potential pitfalls in macro-calibration

When a model has many parameters, over-fitting the model to data becomes a major concern
(Friedman et al. 2001; Bishop 2006). As Carley (1996) suggests, “any model with sufficient
parameters can always be adjusted so that some combination of parameters generates the
observed data, therefore, large multi-parameter models often run the risk of having so many
parameters that there is no guarantee that themodel is doing anythingmore than curve fitting.”

3 The short for the Unified Modeling Language, developed by the Object Management Group: http://www.
omg.org.
4 A standard to describe agent-based models originally proposed by Grimm et al. (2006) for ecological
modeling.
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Interestingly, the issue of over-fitting may even be a concern in macro-calibration when only
a few parameters need to be calibrated. The reason is that agent-based models are highly non-
linear, and even small changes in several parameters can give rise to substantially different
model dynamics. This issue is further exacerbated by the fact that macro-calibration makes
use of aggregate-level data, which is often insufficient in scale for reliable calibration of
any but the simplest models, as many parameter variations can give rise to similar aggregate
dynamics.

Addressing the issue requires greater care and rigor in applying macro-calibration. One
possibility is that instead of choosing only a single parameter configuration, to select a
parameter zone using a classifier such as decision trees (Kaufmann et al. 2009) or other
machine learning algorithms. Subsequently, the variability of parameters within this zone
can be further investigated using sensitive analysis. Another potential remedy is that instead
of using only a single target statistic (e.g., average adoption rates) to use multiple indicators.
A relevant strategy to build agent-based models in the field of ecology is termed “pattern-
orientedmodeling”, which utilizes multiple patterns at different scales and hierarchical levels
observed from real systems to determine the model structure and parameters (Grimm et al.
2005).

In addition, there are more advanced and robust techniques that can improve the rigor of
macro-calibration. The modeling framework in Zhang et al. (2016) and statistical inference
methods introduced in Sect. 4 propose methods which integrate micro and macro calibra-
tion into a single maximum likelihood estimation framework. Through well-established
methods in machine learning, such as cross-validation, one can expect to parameterize a
highly-predictive agent-based model and minimize the risk of over-fitting. Indeed, a fun-
damental feature of any approach should be to let validation ascertain the effectiveness of
macro-calibration in generalizing beyond the calibration dataset. This brings us to the second
common issue revealed by our review: lack of validation on independent data.

5.2.2 Issue II: rigorous quantitative validation on independent data is uncommon

A common issue in the research we reviewed is that validation is often informal, incomplete,
and even missing. The common reason for incomplete data-driven validation is that relevant
data is simply unavailable. However, so long as data is available for calibrating the model,
one can in principle use this data for both calibration and validation steps, for example,
following cross-validation methods commonly utilized in machine learning. Several efforts
seek to standardize the validation process for agent-based models, and computational mod-
els in general. However, few papers discussed explicitly follow any formalized validation
approaches in this literature, although important exceptions exist (Garcia et al. 2007; Zhang
et al. 2011; Stummer et al. 2015).

5.2.3 Issue III: few conduct validation at both micro-level and macro-level

There has been some debate about whether validation should be performed at bothmicro- and
macro-level (Carley 1996). While arguments against the dual-verification often emphasize
greater importance of model accuracy at the aggregate level, we argue that robust predictions
at the aggregate level can only emerge when individual behavior is accurately modeled as
well, particularly when policies that the ABM evaluates can be implemented as modifying
individual decisions.

Statistics-based models, such as machine learning, have well-established validation
techniques which can be leveraged to validate individual-level models. One widely-used
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technique in machine learning and data mining is cross-validation. A common use of cross-
validation is by partitioning the data into k parts, with training performed on k − 1 of these
and testing (evaluation) on the kth. The results are then averaged over k independent runs
using each of the parts as test data. Observe that such a cross-validation approach can be
used for models of individual behavior that are not themselves statistically-driven, such as
models based on the theory of planned behaviors. Unfortunately, few of the surveyed papers,
with the exception of statistics-based models, use cross-validation.

5.2.4 Issue IV: few conduct validation of forecasting effectiveness on independent
“future” data

One limitation of cross-validation techniques as traditionally used is that they provide an
offline assessment of model effectiveness. To assess the predictive power of dynamical sys-
tems, the entire model has to be validated in terms of its ability to predict “future” data
relative to what was used in calibration. We call this notion “forward validation”. In partic-
ular, forward validation must assess simulated behaviors against empirical observations at
both individual and aggregate levels with an independent set of empirical data. This can be
attained, for example, by splitting a time-stamped data set so that calibration is performed
on data prior to a split date, and forward validation is done on data after the split date (Galán
et al. 2009; Zhang et al. 2016; Rai and Robinson 2015; Chica and Rand 2017). In this review,
we do observe several approaches that are validated on independent data, but these either
are not looking forward in time relative to the calibration data, or only focus on macro-level
validation. A common argument for the use of in-sample data for the forward validation is
that new data is not available while the modeling task is undertaken. Notice, however, that
any data set that spans a sufficiently long period of time can be split along the time dimension
as above to effect rigorous forward validation.

5.3 Recommended techniques for model calibration and validation

We have identified several issues in calibration and validation which commonly arise in
the prior development of empirical agent-based models for innovation diffusion, and briefly
discussed possible techniques that can help address these issues. We now summarize our
recommendations:

Multi-indicator calibration When macro-calibration is needed, the use of multiple indi-
cators can help address over-fitting, whereby a model which appears to effectivelymatch
data in calibration performs poorly in prediction on unseen data. We suggest that such
indicators are developed at different scale and hierarchical levels, so that models which
cannot effectively generalize to unseen data can be efficiently eliminated.
Maximum likelihood estimationWhen individual-level data are available, we recommend
constructing probabilistic adoptionmodels for agents, and estimating parameters of these
models by maximizing a global likelihood function [see, for example, the modeling
framework by Zhang et al. (2016), and research discussed in Sect. 4.2]. Doing so offers
a principled means of calibrating agent behavior models from empirical data.
Cross validationThis approach iswidely used formodel selection in themachine learning
literature. Here, we recommend it for both micro-calibration and micro-validation of
ABMs. Note that it does not only apply to statistics-based models, but can be used for
any agent modeling paradigm where model parameters are calibrated using empirical
data. The use of cross-validation in calibration can dramatically reduce the risk of over-

123



Empirically grounded agent-based models of innovation…

fitting. Moreover, as it inherently uses independent data, such validation leads to more
rigorous ABM methodology.
Forward validationThismethod involves splitting data into two consecutive time periods.
Themodeler calibrates an agent-basedmodel using data from the first period, and assesses
the predictive efficacy of the model in the second period. More rigorously, validation of
the model should be evaluated at both individual and aggregate levels.

6 Conclusions

Weprovided a systematic, comprehensive, and critical review of existingwork on empirically
grounded agent-based models for innovation diffusion. We offered a unique methodological
survey of literature by categorizing agent adoption models along two dimensions: methodol-
ogy and application.We identified six methodological categories:mathematical optimization
based models, economics-based models, cognitive agent models, heuristic models, statistics-
based models and social influence models. They differ not only in terms of assumptions
and elaborations of human decision-making process, but also with respect to calibration and
parameterization techniques. Our critical assessment of each work focused on using data for
calibration and validation, and particularly performing validation with independent data. We
briefly reviewed the most important work in the closely related literature on information dif-
fusion, building connections between the innovation and information diffusion approaches.
One particularly significant observation is that information diffusion methods rely heavily on
machine learning and maximum likelihood estimation approaches, and the specific method-
ology used can be naturally ported to innovation diffusion ABMs. Drawing on prior work in
validation of computational models, we discussed four main issues for existing empirically
grounded ABM studies in innovation diffusion, and provided corresponding solutions.

On balance, recent developments of empirical approaches in agent-based modeling for
innovation diffusion are encouraging. Although calibration and validation issues remain in
many studies, a number of natural solutions from data analytics offer promising directions
in this regard. The ultimate goal of empirically grounded ABMs is to provide decision
support for policy makers and stakeholders across a broad variety of innovations, helping
improve targeted marketing strategies, and reduce costs of successful translation of high-
impact innovative technologies to the marketplace.
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