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Abstract Agent-based modeling is commonly used for studying complex system proper-
ties emergent from interactions among agents. However, agent-based models are often not
developed explicitly for prediction, and are generally not validated as such. We therefore
present a novel data-driven agent-based modeling framework, in which individual behav-
ior model is learned by machine learning techniques, deployed in multi-agent systems and
validated using a holdout sequence of collective adoption decisions. We apply the frame-
work to forecasting individual and aggregate residential rooftop solar adoption in San Diego
county and demonstrate that the resulting agent-based model successfully forecasts solar
adoption trends and provides a meaningful quantification of uncertainty about its predic-
tions. Meanwhile, we construct a second agent-based model, with its parameters calibrated
based on mean square error of its fitted aggregate adoption to the ground truth. Our result
suggests that our data-driven agent-based approach based on maximum likelihood estima-
tion substantially outperforms the calibrated agent-based model. Seeing advantage over the
state-of-the-art modeling methodology, we utilize our agent-based model to aid search for
potentially better incentive structures aimed at spurring more solar adoption. Although the
impact of solar subsidies is rather limited in our case, our study still reveals that a simple
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heuristic search algorithm can lead to more effective incentive plans than the current solar
subsidies in San Diego County and a previously explored structure. Finally, we examine an
exclusive class of policies that gives away free systems to low-income households, which are
shown significantly more efficacious than any incentive-based policies we have analyzed to
date.

Keywords Machine learning · Agent-based modeling · Innovation diffusion · Rooftop
solar · Policy optimization

1 Introduction

The rooftop solar market in the US, and especially in California, has experienced explosive
growth in last decade. At least in part this growth can be attributed to the government incentive
programs which effectively reduce the system costs. One of the most aggressive incentive
programs is the California Solar Initiative (CSI), a rooftop solar subsidy program initiated
in 2007 with the goal of creating 1940 megawatts of solar capacity by 2016 [11]. The CSI
program has been touted as a great success, and it certainly seems so: over 2000 megawatts
have been installed to date. However, in a rigorous sense, success would have to be measured
in comparison to some baseline; for example, in comparison to the same world, but without
incentives. Of course, such an experiment is impossible in practice. However, in principle,
insight can be drawn by sensitivity analysis based on hypothetical solar diffusion model.
What is the most appropriate modeling methodology to build a highly robust solar diffusion
model?

Agent-basedmodeling (ABM) has long been a common framework of choice for studying
aggregate, or emergent, properties of complex systems as they arise from microbehaviors of
a multitude of agents in social and economic contexts [6,29,34]. ABM appears well-suited to
policy experimentation of just the kind needed for the rooftop solarmarket. Indeed, there have
been several attempts to develop agent-based models of solar adoption trends [13,31,37].
Both traditional agent-based modeling, as well as the specific models developed for solar
adoption, use data to calibrate aspects of the models (for example, features of the social
network, such as density, are made to match real networks), but not the entire model. More
importantly, validation is often qualitative, or, if quantitative, using the same data as used for
calibration. The weakness of validation makes those models less eligible as a reliable policy
experiment tool.

The emergence of “Big Data” offers new opportunities to develop agent-based models
in a way that is entirely data-driven, both in terms of model calibration and validation. In
the particular case of rooftop solar adoption, the CSI program, in addition to subsidies, also
provides for a collection of a significant amount of data by the program administrators, such
as Center for Sustainable Energy (CSE) in SanDiego county, about specific (individual-level)
characteristics of adopters. While by itself insufficient, we combine this data with property
assessment characteristics for all San Diego county residents to yield a high-fidelity data
set which we use to calibrate artificial agent models using machine learning techniques.
However, the increasing availability of data from various sources in all levels, i.e., micro and
macro levels, also poses significant computational challenge to any researcher who aims to
study the phenomenon of solar diffusion. Machine learning and data mining provide us with
efficient and scalable algorithms, well-principled techniques, such as cross validation, feature
selection etc. A data-driven ABM is then constructed using exclusively such learned agent

123



Auton Agent Multi-Agent Syst (2016) 30:1023–1049 1025

models, with no additional hand-tuned variables. Moreover, following standard practice in
machine learning, we separate the calibration data from the data used for validation.

This paper makes the following contributions:

1. a framework for data-driven agent-based modeling;
2. methods for learning individual-agent models of solar adoption, addressing challenges

posed by the market structure and the nature of the data;
3. an adaptation of a recent agent-based model of rooftop solar adoption, used as a baseline,

with an improved means for systematic calibration (systemitizing the approach proposed
by Palmer et al. [31] entirely new addition compared to our preliminary work [44]);

4. a data-driven agent-based model of solar adoption in (a portion of) San Diego county,
with forecasting efficacy evaluated on data not used for model learning;

5. a comparison of the data-driven approach to the baseline adoption model (a new addition
compared to our preliminary work [44]);

6. a quantitative evaluation of the California Solar Initiative subsidy program (including a
significantly improved and extended approach to optimizing the solar discount policy
relative to our preliminary work [44]), a broad class of incentive policies, and a broad
class of solar system “seeding” policies.

2 Related work

Agent-based modeling methodology has a substantial, active, literature [6,29,34], ranging
from methodological to applied. Somewhat simplistically, the approach is characterized by
the development of models of agent behavior, which are integrated within a simulation
environment. The common approach is to make use of relatively simple agent models (for
example, based on qualitative knowledge of the domain, qualitative understanding of human
behavior, etc.), so that complexity arises primarily from agent interactions among them-
selves and with the environment. For example, Thiele et al. [39] document that only 14 % of
articles published in the Journal of Artificial Societies and Social Simulation include para-
meter fitting. Our key methodological contribution is a departure from developing simple
agent models based on relevant qualitative insights to learning such models entirely on data.
Due to its reliance on data about individual agent behavior, our approach is not universally
applicable. However, we contend that such data is becoming increasingly prevalent, as indi-
vidual behavior is now continuously captured in the plethora of virtual environments, as well
as through the use of mobile devices. As such, we are not concerned about simplicity of
agent models per se; rather, it is “bounded” by the amount of data available (the more data
we have, the more complex models we can reliably calibrate on it).

Thiele et al. [39], as well as Dancik et al. [12] propose methods for calibrating model para-
meters to data. However, unlike ourwork, neither offersmethodology for validation, and both
operate at model-level, requiring either extremely costly simulations (making calibration of
many parameters intractable), or, in the case of Dancik et al., a multi-variate Normal distrib-
ution as a proxy, losing any guarantees about the quality of the original model in the process.
Our proposal of calibration at the agent level, in contrast, enables us to leverage state-of-the-
art machine learning techniques, as well as obtain more reliable, and interpretable, models at
the individual agent level. Recently, in field of ecology and sociology, there is rising interest
to combine agent-based model with empirical methods [23]. Biophysical measurements, i.e.,
soil properties and socioeconomic surveys are used by Berger and Schreinemachers [3] to
generate a landscape and agent populations which are consistent with empirical observation
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by Monte Carlo techniques. Notice that this is quite different application from ours, since we
do not need to generate an agent population; rather we instantiate our multi-agent simulation
with learned agents. Huigen et al. [21] visually calibrate a special agent-based model using
ethnographic histories of farm households to understand linkage between land-use system
dynamics and demographic dynamics. Happe et al. [19] instantiate an agent-based agricul-
tural policy simulator with empirical data and investigate the impact of a regime switch in
agricultural policy on structural change under various framework conditions. However, the
model is not statistically validated. By populating ABM with a population of residential
preferences drawn from the survey results, Brown and Robinson [8] explore the effects of
heterogeneity in residential preferences on an agent-basedmodel of urban sprawl, performing
sensitivity analysis as a means of validation. In settings of public-goods games, Janssen and
Ahn [22] compare the empirical performance of a variety of learning models with parameters
estimated by maximum likelihood estimation and theories of social preferences. However,
no systematic and rigorous validation is applied.

A number of agent-based modeling efforts are specifically targeted at the rooftop solar
adoption domain [7,13,31,32,36,37,45]. Denholm et al. [13] and Boghesi et al. [7] follow
a relatively traditional methodological approach (i.e., simple rule-based behavior model),
and their focus is largely on financial considerations in rooftop solar adoption. Palmer et al.
[31] and Zhao et al. [45], likewise use a traditional approach, but consider several potentially
influential behavioral factors, such as social influence and household income. Palmer et al.
calibrate their model using total adoption data in Italy (unlike our approach, they do not sep-
arate calibration from validation). Zhao et al. set model parameters based on a combination
of census and survey data, but without performing higher-level model calibration with actual
adoption trends. None of these past approaches makes use of machine learning to develop
agent models (indeed, none except Palmer et al. calibrate the model using actual adoption
data, and even they do not seem to do so in a systematic way, using instead “trial and error”).
Much of this previous work on agent-based models of rooftop solar adoption attempts to
use the models to investigate alternative policies. Unlike us, however, none (to our knowl-
edge) consider the dynamic optimization problem faced by policy makers (i.e., how much
of the budget to spend at each time period), nor compare alternative incentive schemes with
“seeding” policies (i.e., giving systems away, subject to a budget constraint).

There have also been a number of models of innovation diffusion in general, as well as
rooftop solar adoption in particular, that are not agent-based in nature, but instead aspire only
to anticipate aggregate-level trends. Bass [2] introduce the classic “S-curve” quantitative
model, building on the qualitative insights offered by Rogers [38] and others. In the context
of rooftop solar, noteworthy efforts include Lobel and Perakis [27], Bollinger andGillingham
[5], and vanBenthem et al. [41]. Lobel and Perakis calibrate a simplemodel of aggregate solar
adoption in Germany on total adoption data; their model, like ours, includes both economics
(based on the feed-in tariff aswell as learning-by-doing effects on solar system costs) and peer
effects.We therefore use their model, adapted to individual agent behavior, as our “baseline”.
Bollinger and Gillingham demonstrate causal influence of peer effects on adoption decisions,
and van Benthem et al. focus on identifying and quantifying learning-by-doing effects.

Several related efforts are somewhat closer in spirit to our work. Kearns andWortman [25]
developed a theoretical model of learning from collective behavior, making the connection
between learning individual agent models and models of aggregate behavior. However, this
effort does not address the general problem of learning from a single observed sequence
of collective behavior which is of key interest to us. Judd et al. [24] use machine learn-
ing to predict behavior of participants in social network coordination experiments, but are
only able to match the behavior qualitatively. Duong et al. [15] propose history-dependent
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graphical multiagent models to compactly represent agent joint behavior based on empirical
data from experimental cooperation games. However, scalability of this approach is quite
limited. Another effort in a similar vein uses machine learning to calibrate walking models
from real and synthetic data, which are then aggregated in an agent-based simulation [40].
Aside from the fundamental differences in application domains from our setting, Torrens et
al. [40] largely eschew model validation, and do not consider the subsequent problem of pol-
icy evaluation and optimization, both among our key contributions. Most recently, Wunder
et al. [42] fit a series of deterministic and stochastic models to data collected from on-line
experimental public goods games. Like our approach, they make use of machine learning to
learn agent behavior, and validate the model using out-of-sample prediction. However, this
work does not validate the model ability to forecast individual and aggregate-level behavior,
since training and validation data sets are chosen randomly, rather than split across the time
dimension (so that in many cases future behavior is used to learn and model is validated
on “past” behavior). Moreover, the models are very simple and specific to the public goods
game scenario, taking advantage of the tightly controlled source of data.

Finally, there has been substantial literature that considers the problem of marketing on
social networks [9,26]. Almost universally, however, the associated approaches rely on the
structure of specific, very simple, influence models, without specific context or attempting to
learn the individual behavior from data (indeed, we find that simple baseline models are not
sufficiently reliable to be a basis for policy optimization in our setting). Moreover, most such
approaches are static (do not consider the dynamic marketing problem, as we do), although
an important exception is the work by Golovin and Krause [18], in which a simple greedy
adaptive algorithm is proven to be competitive with the optimal sequential decision for a
stochastic optimization problem that satisfies adaptive submodularity.

3 Data-driven agent-based modeling

The overwhelming majority of agent-based modeling efforts in general, as well as in the
context of innovation/solar adoption modeling in particular, involve: (a) manual develop-
ment of an agent model, which is usually rule-based (follows simple behavior rules), (b)
ad hoc tuning of a large number of parameters, pertaining to both the agent behaviors, as
well as the overall model (environment characteristics, agent interactions, etc), and (c) val-
idation usually takes the form of qualitative expert assessment, or is in terms of overall fit
of aggregate behavior (e.g., total number of rooftop solar adoptions) to ground truth, using
the data on which the model was calibrated [6,7,13,29,31,34,37,45]. We break with this
tradition, offering instead a framework for data-driven agent-based modeling (DDABM),
where agent models are learned from data about individual (typically, human) behavior, and
the agent-based model is thereby fully data-driven, with no additional parameters to govern
its behavior. We now present our general framework for data-driven agent-based modeling
(DDABM), whichwe subsequently apply to the problem ofmodeling residential rooftop solar
diffusion in San Diego county, California. The key features of this framework are: (a) explicit
division of data into “calibration” and “validation” to ensure sound and reliable model val-
idation and (b) automated agent model training and cross-validation. In this framework, we
make three assumptions. The first is that time is discrete. While this assumption is not of
fundamental importance, it will help in presenting the concepts, and is the assumption made
in our application. The second assumption is that agents are homogeneous. This may seem
a strong assumption, but in fact it is without loss of generality. To see this, suppose that
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h(x) is our model of agent behavior, where x is state, or all information that conditions the
agent’s decision. Heterogeneity can be embedded in h by considering individual character-
istics in state x , such as personality traits and socio-economic status, or, as in our application
domain, housing characteristics. Indeed, arbitrary heterogeneity can be added by having a
unique identifier for each agent be a part of state, so that the behavior of each agent is unique.
Our third assumption is that each individual makes independent decisions at each time t ,
conditional on state x . Again, if x includes all features relevant to an agent’s decision, this
assumption is relatively innocuous.

Given these assumptions, DDABM proceeds as follows. We start with a data set of indi-
vidual agent behavior over time, D = {(xit , yit )}i,t=0,...,T , where i indexes agents, t time
through some horizon T and yit indicates agent i’s decision, i.e., 1 for “adopted” and 0 for
“did not adopt” at time t .

1. Split the data D into calibration Dc and validation Dv parts along the time dimension:
Dc = {(xit , yit )}i,t≤Tc and Dv = {(xit , yit )}i,t>Tc where Tc is a time threshold.

2. Learn a model of agent behavior h on Dc. Use cross-validation on Dc for model (e.g.,
feature) selection.

3. Instantiate agents in the ABM using h learned in step 2.
4. Initialize the ABM to state x jTc for all artificial agents j .
5. Validate the ABM by running it from xTc using Dv .

One may wonder how to choose the initial state x jTc for the artificial agents. This is direct
if the artificial agents in the ABM correspond to actual agents in the data. For example, in
rooftop solar adoption we know which agents have adopted solar at time Tc, and their actual
housing characteristics, etc. Alternatively, one can run the ABM from the initial state, and
start validation upon reaching time Tc + 1.

Armed with the underlying framework for DDABM, we now proceed to apply it in the
context of spatial-temporal solar adoption dynamics in San Diego county.

4 DDABM for solar adoption

4.1 Data

In order to construct the DDABM for rooftop solar adoption, we made use of three data
sets provided by the Center for Sustainable Energy: individual-level adoption characteristics
of residential solar projects installed in San Diego county as a part of the California Solar
Initiative (CSI), property assessment data for the entire San Diego county, and electricity
utilization data for most of the San Diego county CSI participants spanning twelve months
prior to solar system installation. Our CSI data, covering projects completed between May
2007 and April 2013 (about 6 years and 8500 adopters), contains detailed information about
the rooftop solar projects, including system size, reported cost, incentive (subsidy) amount,
whether the system was purchased or leased, the date of incentive reservation, and the date
of actual system installation, among others. The assessment data includes comprehensive
housing characteristics of San Diego county residents (about 440,000 households), including
square footage, acreage, number of bedrooms and bathrooms, andwhether or not the property
has a pool. The CSI and assessment data were merged so that we could associate all property
characteristics with adoption decisions.
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4.2 Modeling individual agent behavior

Our DDABM framework presupposes a discrete-time data set of individual adoption deci-
sions. At face value, this is not what we have: rather, our data only appears to identify
static characteristics of individuals, and their adoption timing. This is, of course, not the
full story. Much previous literature on innovation diffusion in general [2,17,35,38], and
solar adoption in particular [5,27,33,43], identifies two important factors that influence an
individual’s decision to adopt: economic benefits and peer effects. We quantify economic
benefits using net present value (NPV), or discounted net of benefits less costs of adoption:
N PV = ∑

t δt (bt − ct ), where bt correspond to benefits (net savings) in month t , and ct

are costs incurred in month t ; we used a δ = 0.95 discount factor.1 Peer, or social, effects in
adoption decisions arise from social influence, which can take many forms. Most pertinent
in the solar market is geographic influence, or the number/density of adopters that are geo-
graphically close to an individual making a decision. Both economic benefits and peer effects
are dynamic: the former changes as system costs change over time, while the latter changes
directly in response to adoption decision by others. In addition, peer effects create interde-
pendencies among agent decisions, so that aggregate adoption trends are not simply averages
of individual decisions, but evolve through a highly non-linear process. Consequently, even
if we succeed in learning individual agent models, this by no means guarantees success when
they are jointly instantiated in simulation, especially in the context of a forecasting task. Next,
we describe in detail how we quantify economic and peer effect variables in our model.

4.2.1 Quantifying peer effects

We start with the simpler issue of quantifying peer effects. Themain challenge is that there are
many ways to measure these: for example, total number of adopters in a zip code (a measure
used previously [5]), fraction of adopters in the entire area of interest (used by [27]), which
is San Diego county in our case, as well as the number/density of adopters within a given
radius of the individual making a decision. Because we ultimately utilize feature selection
methods such as regularization, ourmodels consider a rather large collection of these features,
including both the number and density of adoptions in SanDiego county, the decisionmaker’s
zip code, as well as within a given radius of the decision maker for several radii. Because
we are ultimately interested in policy evaluation, we need to make sure that policy-relevant
features can be viewed as causal. While we can never fully guarantee this, our approach for
computing peer effect variables follows the methodology of Bollinger and Gillingam [5],
who tease out causality from the fact that there is significant temporal separation between
the adoption decision, which is indicated by the incentive reservation action, and installation,
which is used in measuring peer effects.

4.2.2 Quantifying net present value

To compute NPV in our DDABM framework we need to know costs and benefits that would
have been perceived by an individual i adopting a system at time t . Of course, our data does
not actually offer such counterfactuals, but only provides information for adopters at the time
of adoption. The structure of solar adoption markets introduces another complication: there
are two principal means of adoption, buying and leasing. In the former, the customer pays

1 Our choice of discount factor is in the typical range for residential photovoltaic systems [10]. We found that
small variations in the discount rate do not significantly change the results.
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Table 1 Linear model of solar
system capacity (size)

All coefficients are significant at
p = 0.05 level

Predictor Coefficient

(Intercept) 1.59

Owner occupied (binary) −0.25

Has a pool (binary) 0.63

Livable square footage 7.58e−04

Acreage (binary) 1.32

Average electricity utilization in zipcode 8.25e−04

Table 2 Ownership cost linear
model

Predictor Coefficient

(Intercept) 1.14e+04

Property value 7.38e−04

Livable square footage 0.15

System capacity 6.21e+03

Total adoption in SD county −1.06

the costs up-front (we ignore any financing issues), while in the latter, the household pays an
up-front cost and a monthly cost to the installer. Moreover, CSI program incentives are only
offered to system buyers, who, in the case of leased systems, are the installers. Consequently,
incentives directly offset the cost to those buying the system outright, but at best do so
indirectly for leased systems. In the case of leased systems, there is also an additional data
challenge: the system costs reported in the CSI data do not reflect actual leasing expenses,
but the estimated market value, and are therefore largely useless for our purposes. Finally,
both costs and benefits depend on the capacity (in watts) of the installed system, and this
information is only available for individuals who have previously adopted.

Our first step is to estimate system capacity using property assessment features. We do
so using step-wise linear regression [14], arriving at a relatively compact model, shown in
Table 1. The adjusted R2 of this model is about 0.27, which is acceptable for our purposes.

Next, we use the system size variable to estimate system costs separately for the purchased
and leased systems. For the purchased systems, the cost at the time of purchase is available and
reasonably reliable in the CSI data, but only during the actual purchase time. However, costs
of solar systems decrease significantly over time. A principal theory for this phenomenon
is learning-by-doing [1,20,27,28,41], in which costs are a decreasing function of aggregate
technology adoption (representing, essentially, economies of scale). In line with the learning-
by-doing theory,wemodel the cost of a purchased systemas a function of property assessment
characteristics, predicted system size, and peer effect features, including total adoption in San
Diego county. We considered a number of models for ownership cost and ultimately found
that the linear model is most effective. In all cases, we used l1 regularization for feature
selection [16]. The resulting model is shown in Table 2.

In order to estimate total discounted lease costs, we extracted cost details from 227 lease
contracts, and used this data to estimate the total discounted leasing costs Cl = ∑

t δt ct

through the duration of the lease contract in a manner similar to our estimation of ownership
costs. One interesting finding in our estimation of lease costs is that they appear to be largely
insensitive to the economic subsidies; more specifically, system capacity turned out to be the
only feature with a non-zero coefficient (the coefficient value was 1658, with the intercept
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Table 3 Electricity utilization
log linear model: January

Predictor Coefficient

(Intercept) 5.64

# of bath rooms 1.62e−02

Has a pool (binary) 0.45

Has a pleasant view (binary) 0.12

Acreage (binary) 0.60

Home age (till 2014) −4.85e−05

value of 10,447). In particular, this implies that solar installers do not pass down their savings
to customers of leased systems.

Having tackled estimation of costs, we now turn to the other side of NPV calculation:
benefits. In the context of solar panel installation, economic benefits are monthly savings,
which are the total electricity costs offset by solar system production. These depend on two
factors: the size of the system, which we estimate as described above, and the electricity
rate. The latter seems simple in principle, but the rate structure used by SDG&E (San Diego
Gas and Electric company) makes this a challenge. The SDG&E rates have over the relevant
time period a four-tier structure, with each tier depending on monthly electricity utilization
relative to a baseline. Tiers 1 and 2 have similar low rates, while tiers 3 and 4 have significantly
higher rates. Tier rates are marginal: for example, tier-3 rates are only paid for electricity
use above the tier-3 threshold. The upshot is that we need to know electricity utilization
of an individual in order to estimate marginal electricity costs offset by the installed solar
system. For this purpose, we use the electricity utilization data prior to solar PV installation
for the adopters. Here, we run into a technical problem: after running a regression model,
we found that average predicted electricity utilization for San Diego zip codes significantly
exceed observed zip code averages—in other words, our data is biased, apparently as a result
of adopters having systematically higher utilization rates than non-adopters. To reduce the
bias, we previously applied a penalized linear model [44]. Now, we turn to an alternative
method which is proven to be better-performed in terms of goodness of fit. In this new
method, we first average households of every zip code area over all related features and
obtain a “representative” household of each area. Then, those approximately 100 zip code
“representative” households are used to fit the logarithm of zip code average electricity
consumption with a linear model.2 In addition, for those whose electricity consumption is
known, we use the information directly to compute solar economic savings. Based on the
idea, we train 12 electricity consumption models (i.e., each corresponds to a month in a
year) using typical household characteristics. Moreover, to cope with possible over-fitting
all linear consumption models are l1 regularized and R2s are around 80 %.3 For instance,
the resulting models of January (lowest temperature) and August (highest temperature) are
shown in Tables 3 and 4.

Now that we can predict both system size and electricity utilization.Moreover, we can cor-
respondingly predict, for an arbitrary individual, their monthly savings from having installed
rooftop solar. Along with the predicted costs, this gives us a complete evaluation of NPV for
each potential adopter.

2 Prediction of simple linear regression model without log is unbounded, which could go below zero.
3 l1 regularization is a common method of model selection in machine learning to prevent over-fitting by
adding the l1 norm of weight vector to the loss function so as to penalize extreme parameter values [4]. In
linear regression, it is also known as “lasso” regression [16].
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Table 4 Electricity utilization
log linear model: August

Predictor Coefficient

(Intercept) 5.49

Home value of last time sold −8.64e−08

# of bedrooms 0.25

Has a pool (binary) 1.04

# of garage space 3.14e−03

Has a pleasant view (binary) 2.49e−02

Acreage (binary) 0.65

Home age (till 2014) −3.16e−05

4.2.3 Learning the individual-agent model

In putting everything together to learn an individual-agent model, we recognize that there is
an important difference between the decision to buy and the decision to lease, as described
above. In particular, we have to compute net present value differently in the two mod-
els. Consequently, we actually learn two models: one to predict the decision to lease, and
another for the decision to buy, each using its respective NPV feature, along with all of the
other features, including peer effects and property assessment, which are shared between
the models. For each decision model, we used l1-regularized logistic regression. Taking xl

and xo to be the feature vectors and pl(xl) and po(xo) the corresponding logistic regres-
sion models of the lease and own decision respectively, we then compute the probability of
adoption

p(x) = pl(xl) + po(xo) − pl(xl)po(xo),

where x includes the NPV values for lease and own decisions.
To train the two logistic regression models, we can construct the data set (xit , yit ), where

i correspond to the households in San Diego county and t to months, with xit the feature
vector of the relevant model and yit the lease (own) decision, encoded as a 1 if the system is
leased (owned) and 0 otherwise. To separate calibration and validation we used only the data
through 04/2011 for calibration, and the rest (through 04/2013) for ABM validation below.
The training set was comprised of nearly 7,000,000 data points, of which we randomly chose
30 % for calibration (due to scalability issues of standard logistic regression implementation
in R).4 All model selection was performed using tenfold cross-validation. Since leases only
became available in 2008, we introduced a dummy variable that was 1 if the lease option was
available at the time and 0 otherwise. We also introduced seasonal dummy variables (Winter,
Spring, Summer) to account for seasonal variations in the adoption patterns. The final model
for the propensity to purchase a solar system is shown in Table 5, and a model for leasing is
shown in Table 6.

4.3 Agent-based model

The models developed above were implemented in the Repast ABM simulation toolkit [30].

4 In fact, we have sampled the process multiple times, and can confirm that there is little variance in the model
or final results.
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Table 5 Ownership logistic
regression model

Predictor Coefficient

(Intercept) −10.45

Owner occupied (binary) 1.23

# installations within 1 mile radius 3.19e−03

# installations within 1
4 mile radius 7.05e−03

Lease option available (binary) 0.73

Winter (binary) −0.61

Spring (binary) −0.19

Summer (binary) −0.37

Installation density in zipcode 82.02

NPV (purchase) 9.74e−06

Table 6 Lease logistic
regression model

Predictor Coefficient

(Intercept) −14.04

Owner uccupied (binary) 1.00

# installations within 2 mile radius 3.26e−03

# installations within 1
4 mile radius 9.58e−03

Lease option available (binary) 2.17

Winter (binary) −0.40

Spring (binary) 0.30

Summer (binary) −0.30

Installation density in zipcode 45.85

NPV (lease) 1.03e−05

4.3.1 Agents

The primary agent type in the model represents residential households (implemented as a
Java class in Repast). In the ABMwe do not make the distinction between leasing and buying
solar systems, so that each agent acts according the the stochastic model p(xit ) derived as
described in the previous section, where xit is the system state relevant to agent i’s at time
(iteration) t . In addition, in order to flexibly control the execution of simulation, we defined
a special updater agent type which is responsible for updating state attributes of household
agents xit at each time step t .

4.3.2 Time step

Time steps of the simulation correspond to months. At each tick of the simulation, updater
agent first updates features xit for all agents, such as purchase and lease costs, incentive (which
may depend on time), NPVs, and peer effects, for all agents based on the state of world (e.g.,
the set of agents having adopted thus far in the simulation). Lease and ownership cost are
computed using the lease and ownership cost models as described above, while the incentives
may follow an arbitrary subsidy scheme, and in particular can mirror the CSI rate schedule.
Next, each non-adopter household is asked to make a decision. When a household agent i is
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called upon to make the adoption decision at time t , this agent adopts with probability p(xit ).
If an agent chooses to adopt, this agent switches from being a non-adopter to becoming an
adopter in the simulation environment. Moreover, when we thereby create a new adopter, we
also assign an installation period of the solar system. Specifically, just as in reality, adoption
decision only involves the reservation of the incentive, while actual installation of the system
takes place several months later. Since peer effect variables are only affected by completed
installations, it is important to capture this lag time. We capture the delay between adoption
and installation using a random variable distributed uniformly in the interval [1, 6], which is
the typical lag time range in the training data.

4.3.3 Computing peer effect variables

In order to compute geography-based peer effects, we need information about geographic
location of the households. To this end we use a Repast GIS package. A naive way to compute
peer effect variables would update these for each non-adopter agent in each iteration. How-
ever, this approach is very inefficient and scales poorly, as there are vastly more non-adopters
than adopters in typical simulations. Therefore, we instead let adopter agents update peer
effect variables for their neighbors at the time of system installation, dramatically reducing
the corresponding overhead.

5 A state-of-the-art alternative solar adoption model

Ourmodel differs frommost agent-basedmodeling approaches in the context of rooftop solar
adoption on the following three principal dimensions: first, all features used for modeling
agent behavior are carefully derived from available data, second, calibration is performed
using the individual agent behavior, and third, the model is validated using data that is the
“future” relative to the data used for model calibration.

In order to offer a principled baseline comparison of our model to “state-of-the-art”, we
implement a recent agent-based model that was also proposed in the context of rooftop solar
adoption [31]. Our choice of the model was driven by the following considerations: (a) the
model was sufficiently well described for us to be able to independently replicate it, (b) the
model included an explicit section about parameter calibration, and (c) it was possible for
us to instantiate this baseline model, albeit somewhat imperfectly, using data available to us.
Still, we faced several limitations, the most important of which being the difference between
the targeted population (Palmer et al. model targeted Italy, whereas our model and data is for
California) and available data (Palmer et al. utilized data not available to us, such as household
income, as well as proprietary categorization of individuals into adoption classes).

In this section, we describe in detail our adaptation of the model by Palmer et al. [31],
staying as close as possible to the original model. In addition, we describe a means of model
calibration which is more systematic than the approach (trial-and-error) used by Palmer et
al., but also uses as a calibration target aggregate adoption levels over time.

5.1 Consumer utility model

Strongly influenced by classical consumer theory, the agent in the Palmer et al. model makes
adoption decision based on utility, i.e., to what extent the investment of solar would satisfy
one’s needs. The utility for an agent to install solar PV system i is defined as a weighted sum
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of four factors, or partial utilities:

Ui = wecoui
eco + wenvui

env + wincui
inc + wcomui

com (1)

where
∑

f

w f = 1 for f ∈ F : {eco, env, inc, com} and w f ∈ [0, 1]

The four partial utilities are the economic benefit of the solar investment (ueco), the environ-
mental benefit of installing in a PV system (uenv), the utilities of household income (uinc) and
the influence of communication with other agents (ucom). Simply, agent decides to invest a
PV system when one’s utility surpasses a certain threshold. Notice also that the four weights
in themodel are identical for all agents, which alongwith the decision threshold are calibrated
by matching the fitted aggregate adoption to the ground truth.5

5.1.1 Economic utility

Economic utility captures economic benefit/cost associated with solar installation. We use
net present value of buying solar PV system to calculate the economic utility, which we
normalize to have zero mean and unit variance:

ueco = N PV i
buy − N PVbuy

S(N PVbuy)
(2)

where N PVbuy and S(N PVbuy) are the sample mean and standard deviation of net present
value of all potential adopters respectively.

5.1.2 Environmental utility

The environmental utility ideally measures amount of C O2 solar installation could save.
Due to difficulty of obtaining this information, following Palmer et al. [31], we instead use
expected solar electricity production to compute environmental utility.

uenv = Ei
PV − EPV

S(EPV )
(3)

where Ei
PV = Ri

C SI ∗ H Rsun ∗ 30(days) ∗ 12(months) ∗ 20(years), or the total electricity
production in 20 years. EPV and S(EPV ) are sample mean and standard deviation of solar
electricity generation for all potential adopters.

5.1.3 Income utility

Income utility in agent model of Palmer et al. [31] is originally calculated by household
income. Unfortunately, household income is not available in our current study, andwe instead
use home value that can be treated as a relatively reliable estimate of a household’s income.
Unfortunately, the home value in our original dataset are prices last time the home was sold,

5 In the model developed by Palmer et al. [31], the weighs differ by agent’s socio-economic group, derived
using proprietary means. Since this categorization is not available in our case, and also to reduce the number
of parameters necessary to calibrate (and, consequently, to reduce the amount of over-fitting), we use identical
weights for all agents.
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which can be significantly out of date. To compute home value more accurately, we extract
historical median home sale prices (merged both sold and list price in dollar/ f t2) of San
Diego County from Zillow’s on-line real estate database. Finally, the home value is recovered
bymultiplying the per-unit price with livable square feet. Similar to other utilities, the income
utility of each agent is just the normalized home value, that is

uinc = V i
home − Vhome

S(Vhome)
(4)

where Vhome and S(Vhome) denote sample mean and standard deviation of home value of all
potential solar adopters.

5.1.4 Communication utility

In Palmer et al. [31] work, the communication utility is calculated based on social economic
status of each agent. Because the relevant information is unavailable, we turn to a simple
variation, preserving the essence of their approach. Since, density of installationwithin 1-mile
radius of a household is the most significant among all geology-based peer effect measures,
we use it to derive the communication utility. In other sense, this is equivalent to assume that
all agents within 1-mile radius of a household are in the same socio-economic group, which
is a reasonable assumption since individuals with similar socio-economic status often live
nearby. The communication utility is thus computed as follows.

ucom = Fi
1−mile − F1−mile

S(F1−mile)
(5)

where F1−mile and S(F1−mile) denote sample mean and standard deviation of solar installa-
tion density within 1-mile radius for all potential adopters.

5.2 Calibration

Palmer et al. calibrated the parameters of their model using trial-and-error to explore the
parameter space, and making use largely of a visual qualitative match between predicted
and observed adoption levels. We make use, instead, a more systematic calibration method,
formulating as the problem of minimizing mean-squared error between predicted and actual
adoption:

θ∗ = argmin
θ

1

T

T∑

t=1

(
Ŷ t − Y t )2 (6)

where θ = (weco, wenv, winc, wcom, threshold), Ŷ t and Y t are fitted and actual aggregate
adoption at time t , which we take to be at monthly granularity.

To search for the optimal parameter, we implemented our adaptation of the Palmer et
al. agent-based model in R. Specifically, at each tick, we compute utility of each agent
and an agent will choose to install solar PV as long as its utility gets above the threshold.
Because calibration of the entire dataset is computationally infeasible, we instead calibrate
the model based on a random sample of 10 % (about 44,000) of the households. Rather
finding an ideal parameter by “trial and error”, we here propose a more systematic way to
search the parameter space. It is done through multiple iterations. In first iteration, it scans
every possible parameters based on a relatively coarse discretization of parameter space and
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Fig. 1 Utilities (MSE) of
parameters in 1st iteration
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finds the optimal parameter with the minimum MSE. In the next iteration, it probes only
a subspace of previous iteration around the best solution found so far, meanwhile, a more
fine-grained discretization is applied. For example, Fig. 1, one can see most promising range
of wenv is from 0 to 0.25, which is further examined in the next iteration. The process will
terminate if no further improvement can be achieved by successive refinement. Notice, the
approach involves checking a large number of candidate parameters. To tackle this, we run
the calibration in parallel, each run instance examining a segment of entire search space.
Table 7 shows parameter space, MSE, fitted percentage and number of parameters for each
iteration. The final model (round 7) has the following parameters,

θ∗ = (w∗
eco, w

∗
env, w

∗
inc, w

∗
com, threshold∗) = (0, 0.08, 0, 0.92, 0.9924)

achieving 82% of the observed aggregate adoption level. The model to some extent indicates
only environmental utility and communication utility are significant. Notably, the calibration
process is extremely costly, i.e., each iteration takes about 6–7 h with 70 processes running
simultaneously. In contrast, the training procedure of our proposed DDABMonly takes about
3 h running on a sample of 30 % entire data in a single process. For the calibrated model, the
comparison between the fitted adoption and actual adoption is illustrated in Fig. 2. The key
takeaway is that the calibrated model achieves good performance with respect to the training
(calibration) data.What remains to be seen is how it performs in the validation context, which
is the subject of the next section.

6 ABM validation

We have now reached Step 5 of the DDABM framework: validation. Our starting point is
quantitative validation, using data that is the “future” relative to the data used for model
learning (calibration). Given that our agentmodel and, consequently, theABMare stochastic,
we validate the model by comparing its performance to a baseline in terms of log-likelihood
of observed adoption sequence in validation data. Specifically, suppose that Dv = {(xit , yit )}
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Fig. 2 Cumulative adoption:
Palmer et al. predicted versus
observed on calibration data
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is the sequence of adoption decisions by individuals in the validation data, where xit evolves
in part as a function of past adoption decisions, {yi,t−k, . . . , yi,t−1} (where k is the installation
lag time). Letting all aspects relevant to the current decision be a part of the current state xit ,
we can compute the likelihood of the adoption sequence given a model p as:

L(Dv; p) =
∏

i,t∈Dv

p(xit )
yit (1 − p(xit ))

(1−yit ).

Quality of a model p relative to a baseline b can then be measured using likelihood ratio,
R = L(Dv;p)

L(Dv;b)
. If R > 1, the model p outperforms the baseline. As this discussion implies,

we need a baseline. We consider two baseline models: a NULL model, which estimates
the probability of adoption as the overall fraction of adopters, and a model using only the
NPV and zip code adoption density features for the purchase and lease decisions (referred to
as baseline below). The latter baseline is somewhat analogous to the model used by Lobel
and Perakis [27], although it is adapted to our setting, with all its associated complications
discussed above. As we found the NULL model to be substantially worse, we only present
the comparison with the more sophisticated baseline.

To enable us to execute many runs within a reasonable time frame, we restricted the ABM
to a representative zip code in San Diego county (approximately 13,000 households). We
initialized the simulation with the assessors features, GIS locations, and adoption states (that
is, identifies of adopters) in this zip code. To account for stochasticity of our model, we
executed 1000 sample runs for all models.

Figure 3 shows the likelihood ratio of our model (namely lasso) to the baseline. From
this figure, it is clear that our model significantly outperforms the baseline in its ability to
forecast rooftop solar adoption: the models are relatively similar in their quality for a number
of months as the adoption trend is relatively predictable, but diverge significantly after 9/12,
with our model ultimately outperforming the baseline by an order of magnitude.6 In other
words, both models predict near-future (from the model perspective) relatively well, but our
model significantly outperforms the baseline in forecasting the more distance future.

6 9/12 is where the aggregate adoption becomes highly non-linear, so that the added value of the extra features
used by our model sharply increases.
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Fig. 3 Likelihood ratio R of our
model relative to the baseline
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Table 7 Iterative localized search

Round wenv Threshold MSE Fitted % # of parameters

1 [0, 1] [0.5, 1] 69.79 63 33,000

2 [0, 0.25] [0.98, 0.99] 82.64 78 6930

3 [0, 0.25] [0.99, 1] 75.60 85 6930

4 [0.05, 0.11] [0.991, 0.992] 67.21 88 7700

5 [0.05, 0.11] [0.992, 0.993] 58.71 81 7700

6 [0.05, 0.11] [0.9922, 0.9923] 51.96 84 7700

7 [0.05, 0.11] [0.9923, 0.9924] 48.48 82 7700

Fig. 4 Spread of sample runs of
our model, with heavier colored
regions corresponding to higher
density, and the observed average
adoption trend
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Thus, quantitative validation already strongly suggests that the DDABMmodel we devel-
oped performs quite well in terms of forecasting the probability distribution of individual
decisions.

In addition, we assess model performance in terms of aggregate behavior in more qual-
itative terms. Specifically we can consider Fig. 4, which shows stochastic realizations of
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Fig. 5 Expected adoption:
DDABM model (mean squared
error = 15.35) versus Palmer et
al. (mean squared
error = 1045.30). Mean squared
error measures forecasting error
on evaluation data
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our model (recall that agent behavior is stochastic), where heavier regions correspond to
greater density, in comparison with the actual average adoption path. First, we can observe
that the actual adoption path is in the “high-likelihood” region of our model realizations. This
is a crucial observation: when behavior is stochastic, it would be unreasonable to expect a
prediction to be “spot-on”: in fact, every particular realization of behavior path has a minus-
cule probability. Instead, model correctness is well assessed in terms of how likely observed
adoption path is according to the model; we observe that our model is very likely to produce
an outcome similar to what was actually observed. Second, our model offers a meaningful
quantification of uncertainty, which is low shortly after the observed initial state, but fans out
further into the future. Given that adoption is, for practical purposes, a stochastic process, it is
extremely useful to be able to quantify uncertainty, and we therefore view this as a significant
feature of our model. Note also that we expect variation in the actual adoption path as well,
so one would not therefore anticipate this to be identical to the model average path, just as
individual sample paths typically deviate from the average.

Finally, we use the model developed in Sect. 5 to forecast adoption in the same zip code.
Figure 5 compares the forecasting performance of the Palmer et al. model calibrated using
aggregate-level adoption, and our DDABM model. While initially both models exhibit rea-
sonable forecasting performance, after only a few months the quality diverges dramatically:
the DDABM model is far more robust, maintaining a high-quality forecast at the aggregate
level, whereas the baseline becomes unusable after only a few months. We propose that the
primary reason for this divergence is over-fitting: when a model is calibrated to the aggre-
gate adoption data, it is calibrated to a very “low-bandwidth” signal; in particular, there are
many ways that individuals can behave that would give rise to the same average or aggregate
behavior. Individual-level data, on the other hand, allows us to disentangle the microbehavior
in much greater specificity and robustness, increasing the likelihood of meaningful behavior
models that arise thereby, and reducing the chances of overfitting the parameters to a specific
overall adoption trend.

7 Policy analysis

The model of residential rooftop solar we developed and validated can now be used both as
a means to evaluate the effectiveness of a policy that had been used (in our case, California
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Fig. 6 Adoption trends for the
CSI-based subsidy structure
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Solar Initiative solar subsidy program), and consider the effectiveness of alternative policies.
Our evaluation here is restricted to a single representative zip code in San Diego county, as
discussed above. We begin by considering the problem of designing the incentive (subsidy)
program. Financial subsidies have been among the principal tools in solar policy aimed
at promoting solar adoption. One important variable in this policy landscape is budget: in
particular, howmuch budget should be allocated to the program to achieve a desired adoption
target?

7.1 Sensitivity of incentive budget

Our first experiment compares the impact of incentive programs based on the California
Solar Initiative, but with varying budget in multiples of the actual CSI program budget.7

Specifically, we consider multiples of 0 (that is, no incentives), 1 (which corresponds to
the CSI program budget), as well as 2, 4, and 8, which amplify the original budget. To
significantly speed up the evaluation (and reduce variance), rather than taking many sample
adoption paths for each policy, we compare policies in terms of expected adoption path. This
is done as follows: the simulation still generates 1000 sample “new” states, i.e., realizations
of the probabilistic adoption decision, at each time step, but only uses the one with average
number of adopters as initial state for the next time step.

Figure 6 shows the effectiveness of a CSI-based subsidy program on expected adoption
trends over the full length of the program. As one would expect, increasing the budget
uniformly shifts average adoption up. Remarkably, however, the shift is relatively limited,
even with 8× the original budget level. Even more surprisingly, the difference in adoption
between no subsidies and incentives at the CSI program levels is quite small: only several
more individuals adopt in this zip code, on average.

7 It is important to note that the CSI program has many facets, and promoting solar adoption directly is only
one of its many goals. For example, much of the program is focused on improving marketplace conditions for
solar installers. Our analysis is therefore limited by the closed world assumption of our simulation model, and
focused on only a single aspect of the program.
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Fig. 7 CSI program structure in
California
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7.2 Design of incentive

Since we found that the CSI-like solar system subsidies have rather limited effect, a natural
question is whether we can design a better subsidy scheme.

7.2.1 Problem formulation

The incentive design problem can be formulated as follows. Assume we are given a fixed
budget B, which supposed to subsidize solar adopters in T steps. The amount of incentive
a household can get is simply multiplication of system capacity (kilowatt) and subsidy rate
(dollar/watt). As a step-wise incentive structure, each step is associated with a fixed rate
rt and terminates as an accumulative target in megawatt mt is achieved. Then, the subsidy
program transits to a new step with a new rate and target. This is the exact structure of CSI
program currently implemented in California shown in Fig. 7.

Given this, the problem is to find an optimal incentive structure, s∗ = {(rt , mt )}0,...,T ,
which maximizes ultimate adoption simulated by ABM developed in Sect. 4,

s∗ = argmax
s

Uabm(s, B, T ) (7)

subject to two constraints: (1) budget constraint:
∑T −1

i=0 r i mi ≤ B; and (2) non-increasing
rates: r i ≥ r j ,∀i < j ∈ T .

7.2.2 Parametric optimization

We proceed by creating a parametric space of subsidy schemes that are similar in nature to
the CSI incentive program. We restrict the design space by assuming that r i+1 = γ r i for all
time steps i . In addition, we let each megawatt step mi to be a multiple of the CSI program
megawatt levels in the corresponding step, where the multiplicative factor corresponds to
the budget multiple of the CSI program budget. This particular scheme gives rise to a set of
incentive plans illustrated in Fig. 8. With these restrictions, our only decision is about the
choice of r0, which then uniquely determines the value of γ based on the budget constraint.
To choose the (approximately) optimal value of r0, we simply considered a finely discretized
space ranging from 1 to 8 $/watt for 1×, 2×, and 4× CSI budget. The results, in Figs. 9
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Fig. 8 Parametric incentive
plans
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and 10 suggest that the impact of subsidies is quite limited even in this one-dimensional
optimization context.

7.2.3 A heuristic search algorithm

Given the challenge of finding effective incentive schemes, we now relax the restriction of the
original CSI budget allocation pattern (see Fig. 7), allowing now the proportion of the budget
allocated each step to vary. To this end, we propose a simple heuristic search algorithm. The
algorithm is a step-wise greedy search method, with each step applying a heuristic which is
learned from the previous step. The algorithm proceeds until no improvement can be achieved
through the following series of steps:

1. Solve a basic one-stage incentive optimization problem, i.e., only one rate and one step, in
otherwords, this is to uniformly spread the budget in one single term.As shown in Fig. 11,
for each r i

1 in the discretized space R1 (i.e., equally divided 100 values in (0, 5]), we run
our ABM to obtain utilityU ({(r i

1, mi
1)}) for each policy correspondingly, s.t., r i

1mi
1 = B.

An optimal one-stage incentive optimization policy is defined as s∗
1 = {(r∗

1 , m∗
1)}, s.t.,

U ({(r∗
1 , m∗

1)}) ≥ U ({(r i
1, mi

1)}),∀{(r i
1, mi

1)} �= {(r∗
1 , m∗

1)}
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Fig. 10 Comparison of
distributions of the number of
adopters (n) up to 4/13 for
“optimal” incentive policies
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Fig. 11 1-Stage incentive
optimization

2. Solve a 2-stage incentive optimization problem. Rather than searching all possibilities
in the discretized parameter space, the rate of the first stage for the 2-stage structure is
fixed at r∗

1 , as shown in Fig. 12, by which we implicitly conjecture that r∗
1 is superior to

any other rates. For any possible proportion of B used in stage 1, say Bi
1, we can derive

mi
1 accordingly from r∗

1mi
1 = Bi

1; then for each possible discretized rate r i
2 that is below

r∗
1 , we also determine mi

2 consequently by the budget constraint. Thus, for any arbitrary
policy s = {(r∗

1 , mi
1), (r

i
2, mi

2)}, we run ABM and obtain its utility U (s). The best policy
should be

s∗ = s(m∗
1, r∗

2 ) = {(r∗
1 , m∗

1), (r
∗
2 , m∗

2)} = argmax
s

U (s)

3. Solve a 3-stage incentive optimization problem. Similarly, as illustrated in Fig. 13, the rate
andmegawatt target of the stage 1 are set to r∗

1 andm∗
1 respectively, and the rate of the 2nd

stage is set to r∗
2 . By the budget constraint, for any portion of budget Bi

2 used in stage 2, one
can derivemi

2. Further, for any rate at stage 3, say r i
3, which is below r∗

2 , we can determine

123



Auton Agent Multi-Agent Syst (2016) 30:1023–1049 1045

Fig. 12 2-Stage incentive
optimization

Fig. 13 3-Stage incentive
optimization

Table 8 A comparison of expected adoption of different incentive structures

x-Budget OnePar x-Rebate 1-Stage 2-Stage 3-Stage 4-Stage

1 159 161.5 163.2 163.9 – –

2 163.8 165 166.7 – – –

4 167.1 170.9 171.9 172.2 172.3 –

mi
3 similarly. Thus, for any 3-stage arbitrary policy s = {(r∗

1 , m∗
1), (r

∗
2 , mi

2), (r
i
3, mi

3)},
or simply denote s as s(mi

2, r i
3), we run ABM and obtain its utility U (s). The best policy

for the 3-stage problem is given by

s∗ = s(m∗
2, r∗

3 ) = {(r∗
1 , m∗

1), (r
∗
2 , m∗

2), (r
∗
3 , m∗

3)} = argmax
s

U (s)

4. The algorithm will proceed unless no further utility improvement can be made in a step.
The time complexity is O(Ns Nb Nr ), where Ns denotes number of steps in the worse
case, Nb the number of discretized fractions of budget and Nr the number of discretized
rates upper-bounded by the fixed rate in the preceding stage. Notice that there is also
a constant factor involving running time of simulation for each parameter, but here we
save it to highlight the main factors.

A comparison of expected adoption of different incentive structures is shown in Table 8,
where “x-Budget” indicates the scale of budget relative to the original CSI subsidies,
“OnePar” stands for incentive plans examined in Sect. 7.2.2 and “x-Rebate” refers to incentive
structure discussed in Sect. 7.1. Our heuristic search method is able to find better alternative
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Fig. 14 Distribution of final
adoptions (n) for optimal split of
the seeding budgets
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incentive plans for all budget levels. Moreover, the result suggests that an incentive plan with
smaller number of steps, i.e., 1–3, may be better than spreading the whole budget in a large
number of steps, say 10, which is currently deployed in California.

7.3 Seeding the solar market

Seeing a relatively limited impact of incentives, due to low sensitivity of our model to the
economic variables, we also consider an alternative class of policy, called “seeding”, which
instead leverages the fact that peer effects have a positive and significantly stronger impact
on adoption rates.

Suppose that we can give away free solar systems. Indeed, there are policies of this kind
already deployed, such as the SASH program in California [11], fully or partially subsidizing
systems to low-income households. To mirror such programs, we consider a fixed budget
B, a time horizon T , and consider seeding the market with a collection of initial systems
in increasing order of cost in specific time periods (a reasonable proxy for low-income
households). There is a twofold tension in such a policy: earlier seeding implies greater peer
effect impact, as well as greater impact on costs through learning-by-doing. Later seeding,
however, can have greater direct effect as prices come down (i.e., more systems can be seeded
later with the same budget). We consider, therefore, a space of policies where a fraction of
the budget α is used at time 0, and the rest at time T − 1, and compute a near-optimal value
of α using discretization.8 Our findings, for different budget levels (as before, as multiples
of the original CSI budget), are shown in Fig. 14. We can make two key observations: first,
we can achieve significantly greater adoption using a seeding policy as compared to the CSI
program baseline, and second, this class of policies is far more responsive to budget increase
than the incentive program.

8 In fact, we optimize over discrete choices of alpha (at 0.1 intervals), and the optimal alpha varies with
budget.
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8 Conclusion

We introduced a data-driven agent-based modeling framework, and used it to develop a
model of residential rooftop solar adoption in San Diego county. Our model was validated
quantitatively in comparison to a baseline, and qualitatively by considering its predictions
and quantified uncertainty in comparisonwith the observed adoption trend temporally beyond
the data used to calibrate the model. In the meantime, we developed a second agent-based
model motived by state-of-the-art calibration methodology. It turned out this model severely
underestimates solar adoption, poorly-performed compared to our developed agent-based
model that is based on maximum likelihood estimation. We used our model to analyze the
existing solar incentive program in California, as well as a class of alternative incentive
programs, showing that subsidies appear to have little impact on adoption trends. Moreover,
a simple heuristic search algorithm was deployed to identify more effective incentive plans
among all incentive structures we have explored. Finally, we considered another class of
policies commonly known as “seeding”, showing that adoption is far more sensitive to such
policies than to subsidies.

Looking ahead, there are many ways to improve and extend our model. Better data, for
example, electricity use data by non-adopters, would undoubtedly help. More sophisticated
models of individual behavior are likely to help, though how much is unclear. Additionally,
other sources of data can be included, for example, survey data about adoption characteristics,
as well as results from behavior experiments in this or similar settings. The importance of
promoting renewable energy, such as solar, is now widely recognized. Studies, such as ours,
enable rigorous evaluation of a wide array of policies, improving the associated decision
process and the increasing the chances of successful diffusion of sustainable technologies.

Acknowledgments This work was partially supported by the U.S. Department of Energy (DOE) office of
Energy Efficiency and Renewable Energy, under the Solar Energy Evolution and Diffusion Studies (SEEDS)
program.
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